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FUNCTIONS

STRUCTURE

Introduction

Definition

Function

Types of Fuctions

Operations on Real Functions
Composition of Real Functions

Inverse of a Real Function

LEARNING OBJECTIVES

After going through this unit you will be able to:
e Types of Fuctions

e Operations on Real Functions

e Composition of Real Functions

Inverse of a Real Function

INTRODUCTION

Differential calculus deals with the problem of calculating rates of change. The
‘function’ concept lays the foundation of the study of the most important branch calculus
of mathematics. The word ‘function’ is derived from a Latin word meaning ‘operation’.
In this chapter, we study some frequently used common real valued functions and we
shall study the properties of some of the most basic functions.

DEFINITION

Constant. A quantity which have the same value throughout a mathematical

operation is called a constant. e.g., 2,17, /3, mete.

Variable. A quantity which can assume different values in a particular problem
is called a variable.

e.g., If x represents any number between 3 and 7, then x is a variable.
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Calculus—I

FUNCTION

Let A and B be two non-empty sets of real
NOTES numbers. If there exists a rule //” which associates f
to every element x € A, a unique element y€ B,
then such a rule fis called a function (or mapping)
from the set A to the set B.

If fis a function from A to B, then we write :
f:A — B. Domain Co-domain

The set A is called the domain of function f, and the set B is called the codomain
of f.

If x is an element of set A, then the element in B that is associated to x by fis
denoted by f(x) and is known as the image of x under f or the value of f at x, and we
write f(x) =y.

If f(x) = y, then we also say that x is a pre-image of y.

The variables x and y are respectively called the independent variable and the
dependent variable of the function. This is so, because each y-value depend on the
corresponding x-value.

A function of x is generally denoted by the symbol f(x) and read as “f of x”.
Caution. fx) # f > x.

Range
The range of a function f: A — B is the set of all those element of B which are
having their pre-images in set A.
Or the range of a function is the set of images of elements of its domain.
le., Range of [={fx):xe A}
Range (f) c co-domain of /.
IMustration. Let A={1, 2, 3},
B=1{1,4,5,09, 10}
Let f: A— Bbe the mapping which assigns
to each element in A, its square.
Thus, we have fH=12=1
Q) =22=14
f(3)=32=9.
Since to each element (1 or 2 or 3) of A, there is exactly one element of B, so fis
a function. In this case every element of B is not image of some element of A.
We have,

Domain = {1, 2, 3}
Co-domain ={1, 4, 5, 9, 10}
Range = {1, 4, 9}.
Real Valued Functions (Real Functions)

A function f: A — B is said to be a real function if and only if both A and B are
the subsets of the real number system R.
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e.g., The function g : R = R defined by g(x) =x?+ 1. V x € R, is a real function.

A real function is generally described only by a formula and the domain of the
function is not explicitly stated.

In such cases, the domain of the function is the set of all those real numbers x
for which the function f(x) is meaningful.
le., f(x) € R, as the domain of /.

e.g., we have flx) = \Jx-5

Here, f(x) is defined if x—5>01i.e,x2>5
Domain () ={x:x-5=20}={x:x—-5>0,x e R}.

0
If f(a) is any of the forms = 0 X o0, 00 —oo, (0°, 1%, °,

Then, we say that f(x) is not defined at x = a.

Equal Functions
Two functions are said to be equal (coincide) if their domains, of definition coincide
and their values for all identical values of the arguments are equal.
In other words :
[, g A— Bare equal if f(x) = g(x), x € A.
Illustration. The function f(x) = 2 and g(x) = 1 + sin? x + cos? x coincide.

x2-25

x—-5
The functions f and g are not equal because fis not defined at 5 whereas g is
defined at 5 and has value 10 there at.

Here, we note that f(x) = g(x) for x € R — {5}

Illustration. Let f(x) = ,xe R—{b}and glx) =x+5,xe R.

TYPE OF FUNCTIONS

1. One-one function (or Injective mapping). A function /: A — B is said to
be a one-one function, if the images of distinct elements of A are also distinct elements
of B.

1.e., xzy = flx)#f(y)
Equivalently, f)=fly) = x=y VxyeA
e.g., [:A— Bbe the function defined by
f(x) = 2x + 5 is one-one function.
2. Many one function. A function f: A — B is said to be many one function if
two or more elements of set A have the same image in B.
e.g., [:R— R defined by
f(x) = x? is many one function.
f=2)=f2) =4.
3. Onto function. (or Surjective mapping). A function f: A — B is said to be
an onto function if every element y € B, has at least one pre-image x € A.
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Calculus—1 In other words, for y € B, there exists at

f
least one x € A such that : A ‘ B
v ]

e.g., [:R— R defined by :
f(x) = 4x + 5 1s an onto function. —

Note. If the function f: A — B is onto, then
range of fi.e., the image of A is whole B.

NOTES

4. Into function. A function /: A — B is

A B
said to be an into function if for at least one y € B, ‘

which has no pre-image in the set A.

The adjoining diagram illustrates an into
function,

because 3, 4 € B has no pre-image in A. ‘

e.g., The function
/: R — R defined by

flx) = «*
is an into function, because there is no real number whose image is a negative real
number.
Note. A function which is not onto is called an into function.
5. One-one onto function. (or Bijection A f B
function). A function f: A — B is said to be one-
one onto function if it is both one-one and onto.

e.g., The function
/: A — B defined by
fx)=bx+3,xe A
is an one-one onto function.

Note. Let A and B are finite sets, and f: A—»B is a function :
Then,

(@) If fis one-one, then n(A) < n(B)
@11) If fis onto, then n(A) = n(B).
(i11) If fis both one-one and onto, then n(A) = n(B).

6. Even function. A function fis even if f(— x) = f(x) for all values of x.

e.g., f(x) = cos x is an even function.
because, f(x) =cos x
and f(=x) = cos (— x) =cos x = f(x).
7. Odd function. A function fis odd if f(— x) = — f(x) for all values of x.
e.g., f(x) = sin x 1s an odd function.
because, f(x) =sin x
and f(=x) =sin (— x) = —sin x = — f(x).

[© fx)=—x+1#f(x) and f(— x) # — [(x)]

Note. Every function need not be even or odd. e.g., The function f(x) = x + 1 is neither
even nor odd.
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8. Periodic function. A function f(x) = y is said to be a periodic function if
there exists a real number a > 0 such that :

flx +a) = f(x)
Then, a is called period of the function.

e.g., sin x, cos x, sec x and cosec x are periodic functions with period 27, while tan x
and cot x are periodic with period 7.

9. Identity function. The function f: A — B defined by f(x) = x i.e., each
element of the set A is associated onto itself, then the function fis called an identity
function.

10. Inverse function. If a function f: A — B is one-one and onto function.
for each y € B, there exists unique x € A such that :
f) =y
Then, we can define an inverse function, which is denoted by /' : B— A and /-
I(y) = x if and only if f(x) = y.

Note. (i) Every function does not have inverse. A function has inverse if and only if it is
one-one and onto.

Also, f=y & x=f"10@).

@i1) f~1if it exists is unique.

(@i1) The inverse of the identity function is the identity function itself.

11. Composite function. Let f: A — B and g : B — C be two functions.
for each x € A, there exists a unique element f(x) € B.

Since, g : B — C is a function, so g(f(x)) is a unique element of C.

Thus, to each x € A, there exists exactly one element g(f(x)) in C. This
correspondence between the elements of A and C is called the composite function of f
and g is denoted by gof.

(gof) (¥) = g(f(x)), x € A

The composite function can be represented by the following diagrams.

A f B g C

/

gof :A—>C

Note. (i) gof is composite of f and g whereas fog is composite of g and f.

(1) In general fog # gof.

(ii1) The existence of fog and gof is independent of each other. i.e., if fog exists then gof
may or may not exists and vice-versa.

IMlustration. Let /: R — R and g : R — R defined by
f(x) = 4x + 5 and g(x) = bx— 2.
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Calculus-I (gof) x = g(f(x)) = g(4x + 5)
=b(4x+5) —2=20x+ 25 —-2=20x+ 23
and (fog) x = f(g(x)) = f(5x — 2)
NOTES =4(bx—-2)+5=20x -8+ 5=20x — 3.
Now, let us find (fog) (5) ;
o (fog) (6) =f(g(®)) = f(5(B) —2) =f(23) =4(23) + 5 =92+ 5 =97.
Also, (fog) (5) =20(5) —3 =100 -3 =97. [+ (fog) (x) = (20x — 3)]

OPERATIONS ON REAL FUNCTIONS

In this section, we shall learn how to add two real functions, subtract a real
function from another, multiply a real function by a scalar or another real function,
divide one real function by another.

(1) Addition of two real functions. Let f and g be two real functions whose
domains are D(f) and D(g) respectively. Let D = D(f) N D(g) # 0.

Then, their sum (f + g) is a function defined by :
F+2) (x) =f(x) + g(x) for all x € D.

(11) Subtraction of a real function from another. Let f and g be two real
functions whose domains are D(f) and D(g) respectively. Let D = D(f) n D(g) # ¢.

Then, difference of g from fis denoted by (f — g) and is defined as :

f—2) (x) = f(x) —gx) for all x € D.

(111) Multiplication of a function by a scalar. Let f be a real function whose
domain is D(f) and o be any scalar. Here, by scalar we mean a real number.

Then, the product of is a function from D(f) to R defined by :
(of) (x) = of(x) for all x € D.

(tv) Multiplication of two real functions. Let f and g be two real functions
whose domains are D(f) and D(g) respectively. Let D = D(f) n D(g) # ¢.

Then, their product (or pointwise multiplication) fg is a function defined by :

(f2) (x) = f(x) g(x) for all x € D.

(v) Quotient of two real functions. Let f and g be two real functions whose
domains are D(f) and D(g) respectively. Let D = D(f) n D(g) # ¢.

Then, the quotient of f by g is denoted by g and is defined by :

(ij (x) = f(x) for all x € D(f) n D(g) — {x : g(x) = 0}.
g g(x)

Remark. (i) The sum (f + g), the difference (f — g) and the product fg are defined only
when fand g are real functions having the same domain. In case fand ghave different domains,
one can define these operations for those points x that are common to the domains of both fand
g l.e, the points, which are in the intersection of the domains of fand g.

(i1) Domain of i is D — the set of those points where g(x) = 0.
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COMPOSITION OF REAL FUNCTIONS

Let f and g be two real functions whose domains are D(f) and D(g) respectively
and the domain of f includes the range of g.

Let D={x:xe D and gk e D)} +0o.

Then, the composite of f and g, denoted by fog is a function defined by :

(fog) (x) = flg(x)) for all x € D.

Note. (1) If R(@ n D = ¢,

Then, D = ¢ and fog is not defined.

1) If R(g) < D),

Then, D =D(g).

The composite of g and f, denoted by gof is a function defined by :
(gof) (x) = g(f(x)) for all xe D

where D={x:xe D) and f(x) € D(g)} # ¢.

@) R N D(g) = ¢,

Then, D = ¢ and gof is not defined.

Hence, if R(f) n D(g) = ¢, then gof does not exists. In other words, gof exists if

R() n D(g) # o.
Similarly, fog exists if R(g) N D(f) # ¢.

INVERSE OF A REAL FUNCTION

Let f: X = Y be a one-one and onto function.
For each y € Y, there exists a unique x € X such that f(x) = y.
We get a function, denoted by /' and defined as :
[ Y=>X
such that fTy=x iff fx)=y
The function /' is called the inverse function of f.
Clearly,
e ="10=x
1) =fw)=y.

Remark. (i) Every function does not have inverse. A function has inverse if and only if
it is one-one and onto.

(i1) The inverse of the identity function is the identity function itself.

1
(111) Note that the function /! and ? for any f, need not be same.

SOLVED EXAMPLES
Example 1. If /(x) = —5—, find f(1), f(3), f (3) and f(b).
x° +1 X
Solution. We have, flx) = zx
x“+1
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Calculus—I

NOTES

1 1 1
)= —=—==
1°+1 1+1 2
3 3 3
/=32 1" 9+1 10
fg _2/lx 2/x _ 2/x 2 x2 2
x_22 ) T 2_;'4+2 2,4
& 1 ~ 31 + X X X
X - x2 xz
b
b) = )
1o b% +1

Example 2. (1) If f(x) = x_—]) then show that f (i) = f(x)
x+1 X

@) If flx) =x + l, then prove that [f(x)]° = f(x?) + 3 f| (i)
x x

X

@) If fix) = —; , then show that f(x) +f(1 —x)=1.
16™ +4

Solution. (1) We have,

X
x+1

1

l x l—x__ x-1 B

f(x)_1+1:1+x_ (x+1J__f(x)‘
x

flx) =

(it) We have, f) = x + %

3
[f(x)]fi:(x+%) =x3+i3 + 3(x+l)

X X

Now, flx)y=x+ 1
x
f(e®) =x® + i3

and f(l) =1 +
x

=l+x=f(x)
X X

R\r—l|r—l <

Now, using equations (3) and (4) in equation (2), we have

[f()]? = fx®) + f(x).

X

@iii) We have, fx) =

16% +4
16
161°* 16.167* 16"
f(l—x): 1-x = —x :T
161"*+4 16.16 " +4 4
16
16 4

T 16+16°@) 4+16°
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Adding equations (1) and (2), we have

16* 4 4+16°

+
16 +4 4+16* 4+167

f) +f1-x) =

I+«
Example 3. () If f(x) = 7, show that f(f(tan 8)) =— cot 0.
1

-x
.. I+e"
@) If f(x) = IEL show that f(— x) =— f(x).
—-e
) 1+x
Solution. (7)) We have, f(x) = 1—x
o) = 1+tan 6
f(tan 6) = 1-tan 6
1+ f(tan 0)
tan 0)) = ———
= f(f(tan 0)) 1= f(tan0)
1+ 1+tan 6
1-tan® 1-tan0+1+tan®
1- 1+tan 6 1-tan6-1-tan®©
1-tan 6
= 2 == = t 0
~ -2tan6 tanG__CO '
1+e”

@i1) We have, fx) =

1-¢”

- 1+—
Cl+e ™ ex_ex+1:_ 1+e” _
f(_x)_l_e—x _1_i_ex_1 (1_635} f(x).

ex

Example 4. Find the domain of the following functions :

@) flx) = ﬁ @) flx) =sin! 2x

@) f(x) =cos! (3x— 1) @v) flx) =tan! (2x+ 1)
1
) x) = — ), = ~—21.
) flx) m ) fix)=| x |

1
Vx4 x|

The function f(x) is defined only when x + | x | is positive.

We know that,
x| =% if x>0
YT l=«x, ifx<0

Solution. (i) We have, f(x) =

- vt xl|= x+x, ifx>0
: : x—x, ifx<0

2x, if x>0

= vtlwl= 0, ifx<0

Functions

NOTES
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Calculus—I .. x+ | x| is positive only when | x | = x1i.e., when x> 0.
Domain of /= D(f) = the set of all positive reals i.e., (0, «).

(i1) We have, f(x) = sin! 2x.
NOTES Since, sin~! x is defined only for x € [- 1, 1].
: f(x) = sin! 2x is defined only if :
—-1<2x<1
= - 1 <x< 1
2 2
Domain of f =D = |:— 1, l:|
2°2
(111) We have, f(x) =cos! (Bx—1).

Since, the domain of cos™! x is [- 1, 1].
f(x) = cos™t (3x — 1) is defined only if

—-1<3x-1<1
= 0<3x<2
= 0<x< g
3
2
Domain of f =D = [0, §:|
(tv) We have, f(x) =tan! 2x+ 1)

Since, the domain of tan™! x is the set of all reals i.e., (— oo, o)
f(x) = tan”! (2x + 1) is defined only if :

—oo<2x+1<oo

= —co <y <oo
Domain of f= D(f) = (— o0, ). i.e., the set of all reals.
1
(v) We have, flx) =
x + [x]
>0 ifx>0
Since [x] =4=0 ifx=0
<0 ifx<0
>0 ifx>0
= x+[x]=4=0 ifx=0
<0 ifx<0
[(x) 1s defined for all values of x for which x + [x] > 0
Domain of f =D(f) = (0, *).
(vi) We have, f)=1x-21.

Since, f(x) is defined for all values of x and has real, unique and finite values.
Domain of /= D(f) = the set of all reals. i.e., (— oo, ).
Example 13. Find the domain and range of the following functions :

(@) 3sin x— 4 cos x (i) J1_2 Gii) 1 +x— [x— 2]
X +
2
..o x4 =9 1
@) x—3 (l)2—cos3x'
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Solution. (i) Let
Domain. Since, sin x and cos x are defined for all real values of x.

y=f(x) =3 sin x —4 cos x

3 sin x — 4 cos x is also defined for all real values of x.
= D =R.
Range. From equation (1), we have
y=3sinx—4cos x
Put3=rcos® and 4=rsin 0, r>0. Square and add,
32+ D? =12 (cos? B + sin? )

= 25 =r? [- sin?A+cos? A=1]
= r=>5
From equation (2), we have
y=rcos 0sinx—rsin 0 cos x
= y =5 (cos O sin x — sin 0 cos x)
[+ sin (A—B)=sin A cos B —cos A sin B]
= y=>5sin (x — 0).
But, —1<sin(x—-0)<1
= —-5<Hsin(x—0)<5H
= -5<y<h = —-H<flx)<H
R()=1[-5, 5].
. 1
@i1) Let y=fx) = Jer2

Domain. Here, f(x) is defined only for those real values of x for which x + 2 > 0.

re,x>—2.
D) = [~ 2, «).
Range. From equation (1), we have
1
- x+2

Since, 4/x + 2 is the positive square root of x + 2 for all x in domain of f(x).

= 1 >0 id.e,y>0.
x+2
. R() = (0, ).
Alternatively,
From equation (1), we have
y=—2 = =2
x+2 x+2
1 1
= x+2=—2 = x:—2—2
Yy Yy
1
But x>—2, = ——2>-2
Yy
1 ) .
= — >0 or y*>0 = eithery>0 or y<0
Yy
= y>0 R(f) = (0, ).

(2

(1)

..(D Functions

NOTES
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Calculus-1 @i1) Let y=f@)=1+x—[x—2] (D

Domain. Since, f(x) is the difference of two functions.

.. Let gx)y=1+x and hkx) =[x-2]
NOTES D@ =R and D) =R
- DY) =D nDh)=RNR=R.
Range. We know that

[a]<a<a] +1
= O<a-la]<1
Now, put a = x — 2, we have
0<x—2-[x-2]<1

= 3<1+x—-[x-2]<4 [Adding 3 throughout]
= 3<flx)y <4
R() =3, 4).
: x* -9
@tv) Let y=flx) = (D)
x—3
Domain. Clearly, f(x) is defined for all those real values of x for which x — 3 # 0,
re,x#3.
=R -{3}.
Range. From equation (1), we have
y= x2-9
x—3
x—-3
When x =3, then,y=3+3=6.
R@® =R —{6}.
1
v) Let =flx) = ——WM— (1
(®) y =0 = o ()

Domain. The function f(x) is not defined for those values of x for which
2—cos 3x=0.

2—cos3x#0
which is true for all real values of x.
—1<cos3x<1

D@ =R.
Range. From equation (1), we have
1 1
y=——— = 2-cos3x=—
2 —cos 3x y
1
= cos 3x =2 — — [+ —1<cos3x<1]
y
= —-1<2- —1 <1
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1 . Functions
= -3<——=<-1 [Adding — 2 throughout]
Yy
1 1
= 32—2>21 = 3 <y<l1
Y NOTES
- e
3 2
1
R(H=|=,1].
0=[51]
Example 6. Find the domain and range of the following functions :
x+7 lf—3£x<5 x2 lf x<0
0 fx)=1 x% if 5<x<7 (i) f)={ x if0<x<I
6-2x if x>7 1

if x>1

Solution. (i) We have, f(x)={ x2 if5<x<7

X
x+7 if-3<x<5
6-2x ifx>7

Domain. Clearly, f(x) is defined only when ;

Either —3<x<5 or 5<x<T7 or x>7
xe[-3,5or xe[b,7) or xe€[7,).

. DO =[-3,5) U [b, T)U [T, ) =[-3, )

Range. When -3 <x<5, flx)=x+7

= —-3+7<x+T7<H5+7
= 4<fv) <12
- fv) € [4, 12]
When 5 <x <7, f(x) = a2

= (5)2 < a2 < (7)2
= 25 <x?2 <49
= f(x) € 25, 49).
When x> 7, f(x) =6 —2x
= —2x<-2(7)
= 6—-2x<6-14
= flx) <-8

= f(¥) € (=0, - 8]

R =14, 12] U [25, 49) U (— oo, — §]
= (=0, — 8] U [4, 12] U [25, 49).

x®  ifx<0
@i1) We have, fy=4x if0o<x<1t.

l ifx>1

X
Domain. Since, the given function f(x) is defined for all real values of x

D({) = R. i.e., the set of all reals.
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Range. When x<0; .. f(x)=2a?

= x>0
= f(x) € (0, ).
When 0<x<1;f(x)=x
= 0<x<1
= f(x) € [0, 1]
When x> 1; f(x)zl
x
= l<1 and l>0
x x
= f(x) € (0, 1).

R() = (0, ) U [0, 1] U (0, 1) = [0, ).
Example 7. @) If f (x) =cos x and g(x) =¢*, find (f+g), (- 2), (. g) and (iJ
g

@) If f(x) = e* and g(x) = log, x, find fog and gof.
Solution. (1) We have,
fx)=cosx and gx)=e¢"
(f+ ) (x) = flx) + g(x) =cos x + e*
(f—8) (@) = f(x) — g(x) = cos x —e*
f.2) (x) =f(x). gx) =cos x. e“=e cos x
(i)xzm_ COSX _

= cos x
g glx) e
(11) We have, fx)=e* and g(x)=1log, x
Since, D(f) = the set of all reals i.e., R
R({f) = (0, ).
and g(x) =log, (x) ;x>0
D(®) = (0, =)
and R(g) = the set of all reals i.e., R
R(g) = (0, <) € D())
(fog) (9 = flg (V) = flog, ) = € = x
[ eloe s = f(w)]
Also, R = (0, ) = D(g)
' (gof) () = &(f(x)) = g(e)
=log,.e*=xlog,.e=x [~ log,.e=1]
Example 8. Let f be an exponential function and g be the logarithmic function.
Then find :
@ (f+8) (x) ®) (f-8) ) © (f8) (x)
@ (é) ® © (fog) (¥ 0 (20D (4
() (fof) (x) (h) (f +8) (1).



and

and

Solution. We have, flx)=¢* and g() =log x

(@ - (f+8)(x) = flx) + g(x) ="+ log x
(b) (f—8) () = f(x) — g(x) = e* —log (x)
(c) (.8 () =[(x). gx)=e. logx
) . flx) e

(d) (gJ (v) = o) Togx
(@) (fog) (x)
As f(x)=¢"

D() = R and R(f) = set of all positive reals = R*

g(x) =log x
D(g) = set of all positive reals i.e., R* and R(g) =R

Since, R(g) =R < D()
: (fog) (x) = f(g (v))

=flogx) =e8x=x

() (goh) (x)

Since, R() =R* <= D(g)

gof) (¥) = g(f (¥)) = g(e") =loge*=xloge=x
©) (fof) (x)

Since, R(¢) =R* < D()

B (fof) () = f(f ) = fie®) = e

(h) (f+9 () = flx) + g(x) = e* +log x

= f+g () =el+logl=e [

Example 9. Find fog and gof, if
@ flx)=tan x, x (_7“,%) and  g(x) = \|1-x2

@) f(x) =[x] and g(x) =sin (mx).
Solution. (i) We have,

f@)=tanx ; xe (%,g) and g(x) =

(fog) (¥) = flg @) =f(J1-x2), if-1<x<1

=tan ,/1-x2.
(gof) (x) = g(f (x)) = g(tan x)
= J1-tan? x, “Tox<I
4 4
(11) We have, fx)=]x] and g(x)=sin (nx)
: (fog) (x) = f(g (x)) = f(sin (nx)) = [sin (mx)]
(gof) (x) = g(f (x))
= g([x]) = sin (% [x])

log 1=0]

,Il—x2

[- sin (nm) =0, if n is an integer]|

= 0 for all values of x.
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-1 . . ) )
Example 10. If f(x) = x—+1, (x # 1, — 1), show that fof ' is an identity function.
x

1
Solution. We have, f(x) = x—, x#+1,-1)
x+1

f(x) is one-one :

X1 Xg —
Let X)) = X)) =
et fx) o 11 and  f(x,) 1
flx) = flxy)
-1 _
. Hol_x-1
x+1 x5+1
= =D @+ D)= +1)x, -1 [eross-multiplication]
= XX, X, —x, - 1l=xx +x,—x —1
= X, =X,
f(x) is one-one.
f(x) is onto :
Let f) =y
x—-1
- =y = @-D=ykx+1)
x+1
= x—1l=xy+y = x-—xy=1+y
= x(l—-y)=1+y
1
- =Y
1-y
such that ; flx)y=y
1+y
1+ 1- A+y)-A-y) 2y
1-y) 1ty ; Q+y+AQ-p» 2
1-y
f is onto.

f(x) is one-one and onto, so f(x) is invertible and hence f! exists.
Since, /! exists.

- y = fx)
= ()
We have, x= 1ty
1-y

1+
= o) = Ty

= [x) = 1+x for all x € R —{1}.

-x

Now, we have to show that fof ! is an identity function.



1.

(fof M) (x) = f(f* (x))

1+x 1
) 1-x  _ Q+0-(0-2) _ 2x
M1 x) 1rx L Q+0+(0-x 2
+1
1-x

=xforallxe R —{1}.
fof!is an identity function.

Example 11. Determine whether the following functions are even or odd.

(@) cos x + 4 sec x + 3x* @) e — e~ +sinx
(111) sin x + cos x @v) x®— | x|
Solution. (i) Let f(x) = cos x + 4 sec x + 3x*

f(—=x) =cos (—x) + 4sec (—x) + 3 (—x)*
[*- cos (—0) =cos 0, sec (—0) =sec 0]

=cos x + 4 sec x + 3x* = f(x)

= f=x) = f(x)
/(x) 1s an even function.
(1) Let flx)y=e*—e~+sinx
fcx)=e*—e¥+gin(—x) [+ sin (—6)=—sin 0]
=e¥—e'—gIin x=— [e¥— e~ + sin x] = — f(x)
f=x) =—f(x)

f(x) 1s an odd function.
(ti1) Let f(x) = sin x + cos x
f(=x) =sin (—x) + cos (—x)
[~ sin (= 6) =—sin 0, cos (— 0) = cos 0]
= —sin X + COS X = COS X — SIn X
(cos x — sin x) 1s neither equal to f(x) nor equal to — f(x).
So, f(x) is neither even nor odd.

@v) Let f@)=x2—1 x|
: fCO)=Cx)2—|—xl=x2—] x| =/
%) = f(v)

/(x) 1s an even function.

EXERCISE

Let f and g be real functions defined by
f(¥) = J1+x and g(x) = ,/1— x . Then, find each of the following functions :

Wf+tg @) f-g @) f. g (v) é

Self-Instructional Material
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10.

11.
12.

13.

Let fand g be real functions defined by f(x) =

1 and g(x) = (x+ 4)3. Then, find each of
x+4

the following functions :

. T
Wf+g @) -8 i) f. g () PR
Find the domain of the following functions :
@ x-2| (i1) e**2 @11) sin! (3x—1)
) o o142 :
@iv) e V) \/; (Vi) x— [x].
Find the d i d f - -
ind the domain and range of 5= w05 3x
Find the domain and range of the following functions :
2
. X ox—1
2
@) 7 a2 () 1 @111) [2 cos «x]
) m x—2 . 1
@@v) . V) —| -2 (vr) —m
(i) 3sin x+4 cos x+ 1 (vitr) @
x—

If the map f: R — R is given by f(x) =log (1 + x) and the map g: R — R is given by g(x) =
ev.

Find (gof) (x) and (fog) (x).

If f(x) = \/1- x and g(x) =log, x are two real functions, then describe functions fog and
gof.

If fx)y=[x] and gx) = | x |.

Find (?) fog (x) (tt) gof (x) (11i) gog ().
If fx) = X 1, (x#1,—1), show that fof ! is an identity function.
X+
1 1
If flx) = , show that (fof) (—J =-1.
1-x 2

Show that f(x) =tanZ2x+ | x | is an even function.
Find the inverse of the function f(x) =4x -7, x € R.

Find the period of the function f(x) = sin 3x + cos 4x.

Answers

O Jlyx+f1-x ,xe[-1,1] ) J1+x - J1—x ,xe [-1,1]

i) 1— 2 xve [-1,1] i |22 e -1, 1]
1-x

4 4
o &y +1 (i) x4 (i) (xc + 4)2
x+4 x+4
() v
O R () R (i) {o, %}
@@v) R V) [1, =) ) R



4. Domain. R

1
Range. {g, 1:'
5. (i) Domain. R (11) Domain. R — {~ 1}
Range. [0, 1) Range. R — {1}
(111) Domain. R (iv) Domain. R — {0}
Range. {~2,-1,0,1, 2} Range. {1, — 1}.

(V) Domain. R — {2}
Range. {~ 1, 1}
(vit) Domain. R

Range. [- 4, 6]

(1) Domain. (- 2, o)
Range. (0, «)
(viti) Domain. R — {3}
Range. {1, — 1}.

1
6. 1+ux;log(e*+1) 7. J1-1log, ;Elog(l—x)

8 OI[lxl] @) | [«] | @) | x|

12. [l = x17 ,xeR. 18. 2n

Functions

NOTES

Self-Instructional Material

19



Calculus—I

NOTES LIMIT OF FUNCTIONS

STRUCTURE

Introduction

Preliminaries and Results on Limit
Algebraic Operations of Functions
Algebra of Limits of Functions: Theorem

Some Useful Limits

LEARNING OBJECTIVES

After going through this unit you will be able to:
e Preliminaries and Results on Limit

Algebraic Operations of Functions

Algebra of Limits of Functions: Theorem

Some Useful Limits

INTRODUCTION

The most important idea in Calculus is that of limit. The limit concept is at the
foundation of almost all of mathematical analysis and an understanding of it is
absolutely essential. In this chapter, we give some important results on limits. We
shall deal with properties of continuous functions and uniform continuity.

PRELIMINARIES AND RESULTS ON LIMIT

() Let X by any set.

A function f: X — R, the set of real numbers, is called a real valued function.

A function f: A (c R) — X is called a function of a real variable.

A function from a subset of R into R, is called a real valued function of a real
variable.

In this chapter, we shall deal with only real valued functions of a real variable.

(11) Let x be a real variable and a be a fixed finite number. Let x pass through an
infinite number of values according to some rule. If the successive values approach a

20 Self-Instructional Material



in such a way that | x — a | becomes and remains smaller than any preassigned
number € > 0 (however small), then we say that ‘x tends to a’ or ‘x has the limit @ and
we write x — a or lim x = a.

The definition implies that for each € > 0, there exists a stage in the successive
values of x such that all the values of x after this stage lie in the interval (a —¢, a + €).
The definition does not imply that x must take the value a.

(1) If x approaches to a taking all values less than a, then we say that x tends to
a from the left and write x — a".

(v) If x approaches to a, taking all values greater than a, then we say that x
tends to a from the right and write x — a*.

(v) If a real variable x takes successively values which ultimately become and
remain greater than every positive number (however large), then we say that x tends
to plus infinity and we write x — + o or just x — . That is, given any positive number
k (however large), there exists a stage in the succession of values of x after which all
values of x are larger than x.

(vi) If the successive values of x become and remain smaller than every negative
number (however small), then we say that x tends to minus infinity and write x — oo.

Limit of a Function

Let f be a function defined in some interval containing the point a, but may or
may not be defined at a itself. We consider the behaviour of f(x) as x — a. It may
happen that the values of f become closer and closer to a number [ as x — a, i.e., the
absolute value of the difference f(x) — I can be made smaller than any pre-assigned
positive number €, however small, by taking x sufficiently close to a. In such a case, we
say that f(x) approaches or converges or tends to the limit l as x — a and we write

lim f(x)=1 or f(x) = [asx— a. Formally, we define :
x—a

Definition. Let f be a function defined in a neighbourhood of a except possible
at a. Then, a real number 1 is said to be a limit of f as x tends to a if given any € > 0,
however small, there exists 8 > 0 (depending upon ¢) such that

| flx) -1 | <e, whenever 0<| x—a | <.

ie., l—e<f(x) <l+e¢ wheneverxe (a—9,a) U (a, a+9d)

We write lim fix)=1 or f(x)—lasx— a.
x—a
Remarks 1. The limit of f at a, if exists, will continue to exist and be the same if we
change the value of f at a only.
2. In order to show that lim f(x) # 1, it is enough to produce one € > 0, such that for
x—a

each § > 0, there is some x for which
O<|x—al<dand | flx)y—-1 | >¢.

Right Hand and Left Hand Limits

The above definition of limit implies that f(x) approaches the same limit [
irrespective of the manner in which x approaches a whether from right or from left.
However, f(x) may tend to the limit [/ as x — a from the right only, 1.e., x — a*, then we
call this the right hand limit of fat x = a, i.e, a real number 1 is said to be the right

Limit of Functions

NOTES
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Calculus—I hand limit of f as x — a” if given any € > 0, however small, there exists a § > 0 (depending
upon €) such that

| f(x) =1 | <e whenever a<x<a+3die,l—¢<flx) <l+ e whenever

. . _ " . . L
NOTES a<x<a+d We write xli)n;+ fx) =1 or f(a") = l. Likewise, a real number [ is said

to be the left hand limit of f as x — a~ if given any € > 0, however small ; there exists a
8 > 0 (depending upon ¢€) such that

| fx) -1 1 <eg whenevera -6 <x<a
le., l—e<flx)y<l+e whenever a -6 <x<a.
We write lim f(x) =lor fla) =1

Clearly, if lim f(x) =1, then both the left hand and right hand limits exist and

each is equal to I. Conversely, if both the right hand and left hand limits exist and are

equal, then it can be easily seen that lim f(x) exists and is equal to them. Hence, a
X —a

necessary and sufficient condition for limit of a function to exist is that

lim f(x)= lim f(x)

Theorem

Limit of a function at a point, if exists, is unique.

Proof. Let lim f(x) exist.

x—a
Let, if possible, f(x) tend to two different limits [ and I” as x — a.
Take e=111-Il>0.
Since f(x) — | as x — a, there exists §, > 0 such that
| fix) =1 | <e whenever0< | x—a | <§,
Since f(x) — I’ as x — a there exists §, > 0 such that
| flx) =" | <e whenever 0< | x—a | <39,
Let  =min. {3,, §,}. Then
1[I0 1 =11-fx)+ flx)-1"|
<l fo-11+1flx)y=1|
<g¢+ewheneverO< | x—a | <98
=[1-1
This is a contradiction.
Hence, =1

Infinite Limits

Consider the behaviour of a function f which increases continuously as x — a. If
the values of fbecome and remain greater than any positive number, however large,
for all x sufficiently close to a, we say that f(x) increases beyond limit or that it tends to
oo, If as x — a, f(x) decreases continuously beyond any limit, we say that f(x) tends to
— oo, Formally we define :
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Definition. A function f is satd to tend to o (or diverge to =) if given any
posttive number k however large, there exists a & > 0 such that f(x) > k whenever
0<|x—-al <.

We write f(x) > ~asx—>aor lim f(x)=co.
X —a

A function f is said to tend to — o (or diverges to — ) if given any positive
number k&, however large, there exists a & > 0 such that f(x) < — k& whenever
O<|x—al <3

We write f(x) > —~asx—>aor lim f(x)=—co.
X —a

If a function f does not tend to a finite limit or to e or — o, then (7) if it is bounded
in a neighbourhood of a, it is said to oscillate finitely, (it) if it is unbounded in a
neighbourhood of a, it is said to oscillate infinitely.

1
Examples. (1) Lel f(x) = P # 0.
Here f(x) is not defined at x = 0.

1
Let x —» 0*. As x becomes smaller and smaller, < becomes larger and

larger and crosses all bounds. In fact, if 2 is any positive number, however large,
1 1

— > kfor x < — (=)).

x k

Hence, whatever k is given, we can find a § > 0 such that

1 1
fx)=—>kfor0<x<3§ (:%)
x
Hence lim f(x) =<
x—0"
Similarly, lim f(x) =—o
x—0"

S 1
Since right hand limit is not equal to left hand limit, it follows that — does not
x
tend to any limit finite or infinite. As — does not tend to any limit and is also not
x

1
bounded in any neighbourhood of 0, therefore, < oscillates infinitely as x — 0.

1
(1) Let flx)=—5,x=0.
X
Here lim fx) == lm f).
x— 0" x—0

Limit of a Function as x - worx - — o

A function fis said to tend to the limit | as x — o if given € > 0, however small,
there exists a positive number k (depending upon €) such that

| fx) =1 ] <e VYx=k

Limit of Functions

NOTES
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Calculus—I
We write Iim f(x)=1 or f(x) >lasx— oo
X —+o0

A function fis said to tend to + « as x tends to « if given any positive number k,
NOTES however large, there exists a positive number k’ such that f(x) >k ¥V x>k’

We write lim f(x) = or f(x) > oasx—
X — oo

In a similar way, we can define

lim f(x)=1 and 1in£1 [(x) = o, etc.

1
Examples. (i) Let f(x) = %’ x#0. Then f(x) > 0asx —

(ii) Let =2 x#0,
X
Then f(x) > 0 as x — + oo,
fx) > 0asx— —o
and f(x) > +eoasx— 0.
1
(ti1) Let f®)=——,x20
X
Then f(x) > —~asx— 0.

Algebraic Operations of Functions
Letf: A— Randg: B — R be two functions. Let A " B #¢. We define on A n B
(1.e., on the common portion of the domain of the functions f and g), a new function.
(@) f+ g called the sum of the functions f and g by
(f+9 () = flx) + g(x), xe AnB.
(1) [ — g called the difference of two functions f and g by
(f—2) ) =fx) —g(x), xe AnB.
(i) fg called the product of two functions f and g by
(fe) (x) = f(x) . g(x), x € AN B.

@iv) g called the quotient of the functions f and g by

f f(x) .
E (x) = g(x),xe A N Bprovided g(x) # 0 for x € An B.

If ¢ is a real number, then the scalar product of [ by c¢ is the function ¢f defined
by
ch @®=c.flx), Vxe A

1
If g(x) #0 V x € B, then the reciprocal of g is the function E defined on B by

1 1
(EJ = glx)
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Remark. Product of two functions is different from the composite of two functions. For
example, if f(x) = sin x and g(x) = &2 then (fog) (x) = f(g(x)) = sin &2 whereas (fg) (x) = f(x) g(x) = x>
sin x.

We shall now study the relation between the limits of functions and the limits of their
sum, product, ete.

Algebra of Limits of Functions : Theorem

Let f and g be two functions defined in some deleted neighbourhood of a such

that lim f(x) =1 and lim g(x) = m.

Then,
@ lim f+9)=1+m @) lim (-9 =I-m
@) im (fo)(x)=1.m @v) lim (cf)(x) =cl

(v) lim (lj (x) = 1 if gx)#0, m=#=0
m

x—a g
- (f] L.
) lim|=| )= —>ifglx) =0, m=0.
x—>a\ g m
Proof. (i) Let € > 0 be given.
Now |+ —-U+m)|=1flx)+gw)—~U+m) |
= (f - +gx)—m |
Slfo-L1+]gw)—m | (D)

We have to show that | f(x) =1 | + | gx) — [ | < ¢ for some 3.
lim fikxy=1 = 33§, >0such that

x—a

| flx) =11 < % whenever 0 < | x —a | <39, ..(2)

lim g(x)=m = 33§,>0such that
X —a

| gx) —m | < % whenever 0 < | x—a | <3, ..(3)

Let 8 =min. {5, §,} > 0.
Using (2) and (3) in (1), we have

| f+2)x) —{+m) | <§+§ =¢whenever0< | x—a | <§

= lim (f+2)(x)=1+m.

(1) Proof is similar to (7).
(ir) Let € > 0 be given.
Now | (8)() —Im | = | f(x) g(x) —Im |
= | flx) glx) — lg(x) + lg(x) —Im |
=1 8w (fw) =D + l(g(x) —m) |
Slg !l Tf-L1+1111gx)—-—m] (D)

Limit of Functions

NOTES
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lim gx)=m = 33§, >0such that

|l g)—m | <1,0<|x—-al <3y,
= | g(x) | = lglx)—m +m |
<|lg@w)y—-m |+ | m]|
<l+Iml|,0<|lx—al<y (2

lim fikxy=1 = 338,>0such that

€
|f(x)—l|<2(T|m|),O<|x—a|<82 ..(3)
lim gx)=m = 338,>0such that
€
Ig(x)—ml<m,0<lx—al<83 ..(d
Let 8 = min. {3,, §,, 3,}. Using (2) to (4) in (1), we have
e 1+|m|) € € € _
| (fe)(x) —Im | < 2 1+ |m| +| |2(|l|+1) <gt3 =g, 0<|x—al<9§
= lim (fo)(x) = Im.

(iv) Proof is simple and is left as an exercise for the reader.
(v) Let € > 0 be given

Now 1 1) _lstx)-m| (D)
gx) m| [gx)||m]|
We have to show that M < ¢ for some 3.
|g(x) | [m]
Since lim g(x) =m,
We can find §, > 0 such that
| g(x) —m | <%, O<lx-—al <3
Now lm | =1m-gk+gk) |
< lm—-—gx |+ 1 g@x) | <%+ | g(x) |
= lg@w) | >4 Iml,0<|lx—al<3 (2
Again, lim g(x)=m = 33§,> 0 such that
lgw)-m <% Iml?e0<lx-al<3§, ..(3)

Let 8 = min. {3,, §,}. Using (2) and (3) in (1), we have

11 2|m?
— = <M:8,O<Ix—al<8
glx) m| 2|m|.|m]|

1 1

xl—l;rzz g(x) :m'



(vi) By case (v) above, Limit of Functions

lim gk)=m, m=0 = lim 1 :l
X —a x—)ag(x) m
1 1

Now lim f(x)=1 and lim =— NOTES
x—>a x—>a g(x) m

by case (1i1),

im . 2 L1

x—a g(x)
. 1
= lim (LJ (x)=—.
x—a\ g m
Remark. lim (f + 2 (%), lim (fg)(x) and lim (iJ (x) may exist even if neither
x—a x—a x—>a\ g

lim f(x) nor lim g(x) exists.
x—a x—a

For example, let fand g be defined as follows :

1) = -1 ifx<a
@=11 ifx>a
o 1 ifx<a
8921 _1 ifx>a
Then f+o (x)=0Vxza
and (fg)(x)Z—IZ(iJ X Vxza
g

lim (f+2)(x) =0, lim (fo)(x) =—1= lim (iJ (x)
x—a x—a x—>a\ g
But 1im7 f(x) =—1 and lim+ f=1

lim f (x) does not exist
xX—a

Similarly, lim g(x) does not exist.
X—a

Again, let fand g be defined as follows :

-1 ifx<a
f(x)_{ 1 ifx>a
-1 ifx<a
(1) =
8 { 1 ifx>a
Then f-29x=0 Vx#a

= lim (f—-2)(x) =0, but lim f(x) and lim g(x) do not exist.
xX—a xX—a xX—a
Theorem. If lim [f(x)=1, then lim | fix) | =111.
X —a X —a

Proof. Let € > 0 be given
lim f(x)=1 = 306> 0such that
| fx) =1 ] <e,0<|x—a | <$§

Now [T/ I =1111<flxy-l]1<e0<|x—al<$d
o la=bl=llal-=1bl1l
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Calculus—I N im | flx) | =111.

X —a

Remark 1. Converse of above theorem need not to true.

-1 ifx<a
NOTES For example, let f(x) = .
1 ifx>a
Then | f) | =1 Vax#a.
Iim | f(x) | =1but lim fx)=-1and lim f(x)=1
x—a x—a x—a*

o lim f(x) does not exist.
xX—a

2. Converse of above theorem is true if [ = 0.
Theorem. (Squeeze principle). If f(x) < h(x) < g(x)for 0< | x —a | <3 and

lim f(x)=lim g(x)=1, then lim h(x) =1L

Proof. Let ¢ > 0 be given. Then
lim fixy=1 = 3§, > 0such that

| f)—11 <e,0<|x—al<§,
i.e., l—8<f(x)<l+g,0<|x_a|<61‘

lim gx)=1 = 338,> 0such that

X —a

| g)—11<e0<|x—al <3,

ie., l—e<g)<l+e0<|x—al<y,

Let 8, =min {5, §,, J,}.

Then l—e<flx)y<h@<gw)<l+e0<|x—-al <,
ie., l—e<h@)<l+e0<lx—-al<3g,

= xh_r)r}l hx) =1

We state below some results on limits which can be easily proved.
@) If f(lx) 2 0 V x in a deleted neighbourhood of a, and lim f(x) exists, then
X —a

lim f(x) > 0.

@) If f and g are two functions defined in a deleted neighbourhood A of a and
fx) >g(x) Vxe A then lim f(x) > lim g(x).

@ir) If im f(x) =1> 0, then

lim [f]*=[lim fv]*=*

lim pf® = b(xhi“a””)) —p
and lim (log f(x)) = log (lim f(x)) = log L.

28  Self-Instructional Material



Limit of Functions

SOME USEFUL LIMITS

. 1\ . 1)
@) xh_I)I:o (1 + ;) =e, (11) . 1_1)11100 (1 + ;) =e NOTES
. . ¥ -1
Giii) im (1+ )l =, (o) lim 2 —loga(a>0)
. sinx . 1. tanx
(v) lim =1 (vi) lim =1
x>0 x x>0 x
SOLVED EXAMPLES
. x2-4
Example 1. Show by definition that lim =4,
152 x -2

Sol. Here the function f(x) is defined for x # 2.
Let € > 0 be given

2
-4
Now, | fx) —4 | = ad 5 -4
=|lx+2-4|=]x-2|

we need to prove that
lx—2 | <¢e forO<|x—-2]<39
Take d =¢. Then | f(x) —4 | <ewheneverO< | x—-2 | <39

Hence 111112 flx) = 4.

. .1 o
Example 2. Show that the function f(x) =x sin — for x # 0, has limit 0 as x — 0.
x

Sol. Let € > 0 be given

x sin —
X

<eif | x| <e

X

1
xsin——O‘ =

s —
X

.1S1J

taking 8 = ¢, we see that

1
xsm;—O <e¢, wheneverO< | x | <9
. .1
Hence lim xsin — =0.
x—0 X

Example 3. Discuss the behaviour as x — 2, of the function f(x), where

_J2x+1 whenx <2
[t = 3x +5 whenx >2.
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Calculus—I Sol. Here f2)= lim Qx+1)=5
x— 27

f@) = lim (Bx+5)=11

x—1
NOTES Since f(27) # f(2%), lim f(x) does not exist.
x—2
EXERCISE
1. Verify the following limits :
3 3 _
G) lim X8 _1 (i) lim 8 _5
x—>29%24+5 13 x—>2x% -4
e a3 ee? 43 +2 1
(111) lim 3 5 =_.
x>0 2% +Tx” +4x -3 2
2. Evaluate the following limits :
@) lim tan x —3s1n x (i) lim sin 5x
x—0 X x—0 X
x _ -x
(iii) lim &—¢
x—0 2x
1

2\Z
3. Show that as x — 0, (E)x — 0 but (g)x does not tend to any limit.

ap” +ax" 1+, +a,

4. Find the limit of when x — o for (i) m > n, (i) m < n and

box™ +bix™ Lt + .+ b,
@I11) m = n.
5. Justify or falsify the following statements :

(@) If limits of two function fand g do not exist as x — a, then the limits of f+ g and fg
exist as x — a.

(11) If limits of f+ g and fexist as x — a, then the limit of g exists as x — a.
@) If im f(x) and lim f(x) . g(x) both exist, then lim g(x) exists.
x—a x—a x—a
6. Iff(x) =g for0<]| x| <8 for some §> 0, then prove that lim f(x) = lim g(). Is the
x—0 x—0
converse true ?

7. Give examples of two functions f and g to show that f(x) > g(x) but lim f(x) = lim g(x).
x—a x—a
8. Iff(x) <g(®) and lim g(x) exists, does it follow that lim f(x) exist ?
X —a X —a

_J 1 if x is rational
9. I/ =1_1 ifyx is irrational

then show that lim f(x) does not exist for any a € R.
X —a
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UNI T II Continuity of Functions

CONTINUITY OF FUNCTIONS NOTES

STRUCTURE

Introduction

Definition

Discontinuity of a Function
Bounds of a Function

Theorems of Continuous Functions
Monotonic Functions

Uniform Continuity

Solved Examples

LEARNING OBJECTIVES

After going through this unit you will be able to:
e Discontinuity of a Function

Bounds of a Function
e Theorems of Continuous Functions
®* Monotonic Functions

e Uniform Continuity

INTRODUCTION

While defining lim f(x), the function f may or may not be defined at x=a. Even
X —a

if fis defined at x =a, lim f(x) may or may not be equal to the value of the function at
X —a

x=a. If lim f(x) = f(a), then we say that fis continuous at x = a.
x—a

A formal definition is :

DEFINITION

Let fbe a function defined in a neighbourhood of a. Then fis said to be continuous
al a if given any € > 0, however small, there exists a 8 > 0 (depending upon ¢) such that

| f(x) - fla) | <t whenever | x—a | <3d.
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Calculus=l Since lim f(x) exists if and only if lim f(x) = lim f(x), therefore, a function
x—a x—>a x—a*

/ is continuous at x = a if and only if
lim f(x)=f(a)= lim f(x).
NOTES x—)a’f f x—)a*f
This form of definition is often useful.
If lim f(x)=f(a), then we say that f is continuous to the left of a (or left

X —a

continuous at a).

If lim+ f(x)=f(a), then we say that [ is continuous to the right of a (or right

X —a

continuous at a).
A function fis said to be continuous in an open interval (a, b) if it is continuous
at every point of (a, b).
A function fis said to be continuous in a closed interval [a, b] if it is
(1) right continuous at a
(11) continuous at every point of (a, b)
(tit) left continuous at b.
A function fis said to be continuous in a semi-closed interval [a, b) if it is
(@) right continuous at a
(1) continuous at every point of (a, b).
Likewise a function fis continuous in a semi-closed interval (a, b] if it is
() continuous at every point of (a, b)
(@) left continuous at b.

A function f is said to be continuous on an arbitrary set S(c R) if for each
e¢>0and a € S, there exists d > 0 such that

| f(x) —f(a) | <&, wheneverxe Sand | x—a | <3d.

Examples on Continuous Functions
1. Every constant function f: x — c, is continuous on R.
For, let € > 0 be given and a € R. Then,
| f@)—fl@) | =1 c—c|=0<g,
whenever | x —a | <3d.
2. The identity function f: x — x, x € R is continuous on R.
For, let € > 0 be given and a € R.
Then, ford=¢, | flx)—f(a) | =1 x—a | <k,
whenever | x —a | <3d.
3. The function f: x — x", n € N, is continuous on R, because, for any a € R,

lim x"=da" = f(a).

4. Weknow: | sinx | <] x| and | cosx | <1,V xe R. Now, for any a € R,

: ) . X—a x+a
| sinx—sina | =|2sin cos 2
. x—a x+a x —
=2 |sin cos <2 =|lx—al
2 2
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given any € > 0, 38 (=€) > 0 such that
| sinx—sina | <g, whenever | x—a | <8
sin x is continuous at every point a € R.

Similarly, cos x is continuous on R.

Discontinuity of a Function

A function f which is not continuous at a point ‘a’is said to be discontinuous at
the point ‘a’. ‘a’ 1s called the point of discontinuity of f or fis said to have a discontinuity
at a.

A function which is discontinuous even at a single point of an interval, is said to
be discontinuous in the interval.

A function f can be discontinuous at a point x = a because of anyone of the
following reasons :

(@) f(x) is not defined at x = a

(1) lim f(x) does not exist
X —a

(@i1) lim f(x) and f(a) both exist but are not equal.
@) If lim f(x) exists but is not equal to f(a), then we say that fhas a removable

discontinuity, as just by changing the value of fonly at a from f(a) to lim f(x), the new
X —a

function can be made continuous at a.
@) If lim f(x) does not exist, then the function cannot be made continuous, no
x—a

matter how we define f(a). In this case.
(@ If lim f(x) and lim f(x) both exist but are not equal, then we say that f

X —a X —a
has a discontinuity of first kind (or that [ has a jump discontinuity at a). It cannot be
removed.
The function fis said to be left discontinuous or right discontinuous at a according

as
lim f(x)#f(a)= lim f(x)
or lim f(x)=f(a)# lim f(x)

X —a xX—>a

(b) If either lim f(x)or lim f(x) does not exist, then we say that f has a dis-

x—a x—a*
continuity of second kind.

f1is said to have a discontinuity of second kind from the left or right according as

lim f(x)or 1im+ f(x) does not exist.

x—a x—a

(1) If a function fhas a discontinuity of second kind on one side of @ and on the
other side, it may be continuous or may have discontinuity of first kind, then fis said
to have mixed discontinuity at a.

@iv) If either of the limits lim f(x)or lim+ f(x) is infinitely large, then a is said

to be a point of infinite discontinuity.

Self-Instructional Material

Continuity of Functions

NOTES

33



Caleulus-I Examples on Discontinuities

2 —
1. The function f(x) = xx 5 is continuous for x # 2.
NOTES Atx=2:
2
x°-4 . (x-2)(x+2) .
1 = 1 = 1 = ¢ =
xh—>me(x) xh—>mz x -2 x1—>mZ x—2 xh—>mQ(x+Z) 4

But, the value of the function is not defined at x = 2. Therefore, the function has
a removable discontinuity. It can be made continuous at x = 2, by redefining it as
follows :
x2-4
fW=yx-2"
4 , x=2
2. Consider the function defined by

sin 2x
f<x>={ P

x#2

1 , x=0
. . sin2x
Now, lim f(x) = lim xX2=2
x—0 x>0 2x
so that lim f(x) # f(0).
x—0

Therefore, the function is discontinuous at x = 0. The function has a removable
discontinuity at the origin as the discontinunity can be removed by redefining the
function at the origin such that f(0) = 2.

3. Consider the function defined by

9 .
_ ) x*, ifx<0
f(x)_{4x+3, if x>0

Now, lim f(x)= lm %) =0
x—0" x—0"

lim f(x)= lim (4x+3)=3
x— 0" x—0"
lim f(x) and lim f(x) both exist but are not equal.
x—0" x— 0"

Thus, the function has a discontinuity of first kind or that the function has a
jump discontinuity.
4. Since in the example (3) above,

lim f(x) = f(0) # lingg f(x)
x—0" x—

therefore, the function is left continuous at 0 or the function is right discontinuous
at 0.

5. Consider the function

2 .
_ ) ox, if x <0
f(x)_{4x+3, ifx>0
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Then, lim f(x)=0, lim f(x)=3 and f(0)=3
x— 0"

x—0"
lim f(x) # f(0) = lin(r)g f(x)
x—0" x—

the function has a discontinuity of first kind and the function is right
continuous or left discontinuous.

1
6. For the function f(x) = e* sin —
x

lim f(x) =0, lim /[(x) does not exist and the function is not defined at x = 0.
x—=0" x—0"

Therefore, the function has a discontinuity of first kind from the left and a discontinuity
of the second kind from the right at x = 0. Thus, the function has a mixed discontinuity
at x=0.

1 .
7. I f(x) = T—a’ then f(x) is continuous for each x # a. For x = a, xlint} f(x) = — oo,

lim f(x) = e and f(x) is not defined at x = a.

Thus, the function has an infinite discontinuity at a.
8. Consider the function

cosec(x—a), ifx#a

flx) =

x—a
0 , ifx=a

The function has infinite discontinuity at x = a.
For, letx=a—h, (h > 0) so thatas x - a-, h — 0".

cosec(a—h—a)

lim f(x) = lim cosec (x —a) = lim
x—at x—a X—Q h—0" a—-h-a

. cosec(—h) .1 1
= lim ——— = lim —Xx— = o
N -h r—>0"h sinh

Since lim f(x) # f(a), the function is discontinuous at a.
x—a

Further, one can see that lim f(x) = e
xX—a

/ has infinite discontinuity at a.
9. Consider the function

x
—, x#0
f) = 9]x|
1 , =0
in [0, 1] and in [~ 1, 1].
Here, f(x) is continuous everywhere on [0, 1]. However, the function defined on
[~ 1, 1] is not continuous at x = 0.

For, lim fo)=—1, lim flw)=1/0)=1

x—0"
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Calculus—I lim fx) # lim f(x)
x—0" x—0"

So, the function is left discontinuous but right continuous at 0.
10. The function

NOTES )
e* -1
fg={1 > *70
e* +1
0, x=0
1s discontinuous at x =0
1
For, Asx - 0f, — 5 =
x
1 1
e* scoande * =0
. 1
Again, when x -5 07, — —> — o0
x
1
e -0
1
. -1 -1
Hence> lim f(x): 11m el :0 = _
x—0" x =0 = 0+1
e* +1
1 1
— x —
x—0" PR x—0" - 1+0
e* +1 1+e *

lim f(x)# lim f(x)
x—0" x—0"
Lim f(x) does not exist.

Thus, the function is discontinuous and the discontinuity is of first kind.

BOUNDS OF A FUNCTION

Let fbe a function defined on a closed interval [a, b]. As x varies in this interval,
[(x) assumes varying values. If there exists a real number k such that f(x) >k, V x ¢ [a,
b], we say that the function f is bounded below and k is called a lower bound of /. If
there exists a real number K such that f(x) <K, V x € [a, b], we say that the function f
is bounded above and K is called an upper bound of /.

If there are two numbers k and K such that k < f(x) <K for every value of x in the
interval [a, b], then we say that fis bounded on [a, b] and k and K are called lower and
upper bounds of fover [a, b].

If for any given € > 0 (however small), there exists at least one x € [a, b] such
that f(x) < k + € and at least one x € [a, b] such that f(x) > K — ¢, then k and K are
called the greatest lower bound (g.1.b.) and the least upper bound (Lu.b.) of f in the
interval [a, b]. & and K are also called supremum and infimum of f on [a, b].
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For example,

() The function sin x defined on [0, 2nt] is bounded and has g.lb. = — 1 and
Lub.=1.
(11) The function f defined on [0, 1] by
1
—, x#0
() =y«
0, x=0

is not bounded on [0, 1].
(i1) The function f defined by

f)= ——, xe [0, =)
x+1

is bounded and has g.1.b. =0 and Lu.b. = 1.

THEOREMS OF CONTINUOUS FUNCTIONS

Theorem
A function fis continuous at a if and only if for every sequence < x, > converging
to a (x, € D, domain of the function f), the sequence < f(x,) > converges to f(a).
Proof. (i) Let f be continuous at a and the sequence < x, > converges to a.
Since f1is continuous at a.
given any € > 0, 38 > 0, such that
| f(x) —f(a) | <g, whenever | x—a | <9d (D)
Since < x> converges to a, 3 a positive integer m such that
lx, —a | <3, Vnzzm ..(2)
From (1) and (2), we have
| fix)—fla) | <e Vnzm
= < f(x,) > converges to f(a).

(i) We are given that whenever x — a, then < f(x,) > converges to f(a). We are to
show that fis continuous at a.

Let if possible, f be not continuous at a. Then, 3 € > 0, such that for every & > 0,
there exists a point x such that
| x—al <dand | flx) —fla) | >¢

. 1 . .
Taking 8 = —, we can find a point x, such that
n

1
| x, —al <;and | fix)—fla) | ze Vn

= <ux,>converges toaand < f(x,) > does not converge to f(a). This contradiction
proves that fis continuous at x = a.

Remark. The choice of <x, >in the §-neighbourhood of a such thal <x, > converges lo

a is infinite. For example, x, = a + —’11 where 0 <§, <3, is such a choice.
2
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Calculus—I Theorem

If fand g are two continuous functions at a, then

(@) [+ g is continuous at a @) f— g is continuous at a
NOTES f
(111) fg is continuous at a. @v) L is continuous at a, provided g(a) # 0
g

(v) cf is continuous at a, where ¢ is constant.

Proof. Let < a, > be a sequence converging to a.

(1) Since f is continuous at a, < f(a,) > converges to f(a).
Since g is continuous at a, < g(a,) > converges to g(a).

nhfi, f+9a,) = nhfi, (f(a,) + g(a,))
= nhfi, fla,) + nhfi, g(a,) = fla) + gla) = (f+9) (a)

= the sequence < (f + g) (a,) > converges to (f + g)(a).
= f+ g is continuous at a.

(1) As of part (7).

@ii1) Since fis continuous at a, < f(a,) > converges to f(a).

Since g is continuous at a, < g(a,) > converges to g(a).

nhfi, (fo)a,) = nhfi, (f(a,) g(a,))
= nhfi, fla,) nhfi, g(a,) = fla) g(a) = (f29)(a)

= the sequence < (fg)(a,) > converges to (f2)(a).
= fg is continuous at a.
(fv) Since fis continuous at a, < f(a,) > converges to f(a).
Since g is continuous at a, < g(a,) > converges to g(a).
Since g(a) # 0, there exists a positive integer m such that g(a,) #0, V n > m.

lim f(a,)
lim (ij(an):hm [f(an)J: n—>oco _f(a)

n—e\ g n—\ gla,) 1511 g(an)_g(a)
= the sequence < (LJ (a,)> converges to (Lj(a).
8 8
= 4 is continuous at a.
g

(v) Left to the reader as an exercise.

Remark. Since a function f is continuous at a if and only if lim f(x) = f(a), the proofs
xX—a

of the above theorem can also be deduced from the corresponding results on limits.
Note. (1) Every polynomial function is continuous for every real number.

(2) Every rational function is continuous for every real number other than zeros of the

denominator.
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Theorem

If a function fis continuous at a, then | f | is also continuous at a.
Proof. Let € > 0 be given.
Since f1s continuous at a, therefore, there exists 8 > 0 such that
| f(x) —f(a) | <g, whenever | x—a | <9d
Now, | | flX) | = | fla) | | <1 flx) —fla) | <€, whenever | x—a | <8
(v la=-blzllal-1bl1l)
= | f | is continuous at a.
Remark. Converse of the above theorem is false. For example, if

flx)= { Lifx is rational and a is any real number, then in the interval (a — d, a), there lie

—1ifx isirrational
infinitely many rationals as well as irrationals. Therefore, f(x) oscillates between — 1 and 1.

Therefore, f cannot tend to a definite value as x — a.

Thus lim f(x) does not exist.
x—a

Similarly , Iim f(x) does not exist.
x—at

Hence fis not continuous at a.
But | flx) | =1VxeR

Hence | f | is continuous everywhere and in particular at a also.

Cor. If fand g are two continuous functions at a, then the functions max. {f, g}
and min. {f, g} are both continuous at a.

For, max. {f, g} =

DO [

f+o+5 If-gl

and min. {f, g} =

DO [

f+o—5 I f-gl.

Theorem

Composite of two continuous functions is a continuous function, tv.e., if f is a
continuous function at x =a and g is a continuous function at f(a), then gof is a continuous
function at x =a.

Proof. Let ¢ > 0 be given.
Since g is continuous at f(a)
38 > 0 such that
| g (fx)) —g(f(@) | <ewhenever | f(x)—f(a) | <3 ~.(1)
Since fis continuous at x = a,
38, > 0 (depending upon §) such that
| f(x) —fla) | <8 whenever | x—a | <9, ..(2)
from (1) and (2), we have, for any € > 0, 33, > 0 such that
| (gof)(x) — (gof)(a) | <ewhenever | x—a | <9,

= gof is continuous at x = q.
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Calculus—I Theorem

A function f is continuous at a if and only if for each € > 0, there exists & >0 such
that | f(x,) - f(x,) | <€, whenever x,, x,€ (a -3, a+J).
NOTES Proof. Let f be continuous at a.
Then, for € > 0, 33 > 0 such that

| flx) —fla) | < %, whenever | x—a | <34.

for x;, x, € (@ -9, a +)9),
| fxe) = flxy) | =1 flx) —fl@) + fla) — flxy) |
<1 fle) —fla) | + 1 flxy) —fla) |
e €
<—+—=¢
2 2
Conversely, let for each € > 0, 38 > 0 such that
| flx,) — flx,) | <€, whenever x, x, € (@ -3, a+)9).
Taking x, = x and x, = a, we have
| f(x) —f(a) | <&, whenever x € (@ -9, a+ d)

= fis continuous at a.

Theorem

If a function fis continuous at a, then it is bounded in some neighbourhood of a,
1.e., there exists 5> 0 and k> 0 such that | f(x) | <k, for every x in (a -3, a + 3) at which
fis defined.

Proof. Take € = 1. Since fis continuous at a, 3 8 > 0, such that

| f(x) —f(a) | <1, whenever | x—a | <d,x¢€ Df

= fla) —1<f(x) <f(a) + 1, whenever | x—a | <98
= f(x) is bounded.
Theorem

FEvery function continuous on a closed interval is bounded in that interval.
Proof. Let f be a continuous function on I (= [a, b]). Let f be not bounded above

in [a, b]. Let ¢ be the mid-point of [a, b] (i_e_, c=2 ; b)_ Then f must be unbounded

above in at least one of the intervals [a, c] and [c, b]. Let us call that interval I; and
rewrite it as [a,, b,] (if fis unbounded in both the subintervals, then we take [a, c] as
[a,, b;]). Let ¢, be the mid-point of [a;, b,]. Then f must be unbounded above in at least
one of the intervals [a,, ¢,] and [c,, b]. Call that interval I, and rewrite it as [a,, b,]. (If
f1is unbounded in both the intervals, then we call [a,, ¢,] as [a,, b,]). Continuing like
this, we get a nested sequence of closed intervals I 21, 2I,01,2... 21 2.... such that

@) length I,)=b, —a, = (2%) (b — a) so that

lim (engthl)=0

n—eo
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@i1) fis unbounded in each of the intervals I .

By Nested Interval Property (1 I is asingleton ={}, say. Since fis continuous
n=1
on I, fis continuous at & also. Therefore, given any € > 0, 38 > 0 such that

| f(x) —f(€) | <ewhenever | x—& | <8.
Since lim (length of I ) =0, 3 a positive integer m such that I < (£—3, £ +9).

If x is any point of I, then
| o) | =1/ —f©) + f©) |
SI)—-fO I +1f0O) 1 <e+]|fE)I,

showing that fis bounded in I . This contradicts the fact that fis unbounded above in
each subinterval I . Hence f must be bounded above in I. Similarly, fis bounded below
in [a, b]. Hence fis bounded in [a, b].

Remark. The above theorem need not be true if the interval is not closed.

For example :

() Let f = L. x e 0, 1.
x
Then fis continuous on (0, 1].

As x — 07, l — oo, Therefore, fis not bounded on (0, 1].
x

(@) flx) =log x, x € (0, =)

f1s continuous on (0, ), but it is not bounded.

Theorem
Every function continuous on a closed interval attains its bounds (at least once
on the interval).
Proof. Let f be a continuous function defined on a closed interval 1.
fis bounded.
Lu.b. and g.1b. of [ exist.
Letu=1lub. of fand [ =g.Lb. of /.

We shall show that there exist real numbers & and 1 in I such that f(§) = u and
/() =1. Let, if possible, f(x) <u V xe 1.

= u—fx)y>0 Vvxel

Since fis continuous on I, is also continuous on I

1
u—f(x)

1
———— 1s bounded.
u-flx)
3 a positive number k such that
1

u—f(x)

= u —% is an upper bound of f

<k Vxel = f(x)Su—% Vxel

This contradicts the fact that u is the Lu.b. of /. Hence there must exist some &
€ I such that

u _f(&) = 07 i-e~> f(‘:) = u.
Similarly, there must exist at least one point 1 € I such that f(n) = L.
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Calculus—I

NOTES

Remark. The above theorem need not be true if the interval is not closed. For example :

1. The function f defined on (0, 1] or ([0, 1) or (0, 1)) by f(x) = x is continuous and
bounded on (0, 1] or ([0, 1) or (0, 1)) with g.1.b. of f=0and l.u.b. of f=1. g.1.b. of fis not attained
on (0, 1], L.u.b. of fis not attained on [0, 1) and neither is attained on (0, 1).

2. The function y = x is continuous on R but is not bounded on any infinite interval.

2

3. The function f(x) = 2x 1 is continuous and bounded on R. It attains its g.1.b. = 0 but
X"+

not the l.u.b. = 1 on any interval. Here f(x) is not continuous on the closed interval (R is open).
So, the above theorem is not applicable.

Theorem

Let f be a continuous function on [a, b] and a < c¢ <b. Then
@) fla) > 0 (fla) < 0) tmplies that there exists &> 0 such that f(x) > 0 (< 0) for
all xin [a, a +39).
@) f(c) > 0 (f(c) <0)implies that there exists & > 0 such that f(x) > 0 (f(x) < 0) for
all x in (¢ -3, ¢ +9J).
@) f(b) > 0 (f(b) < 0) implies that there exists § > 0 such that f(x) > 0 (f(x) <0) for
all xin (b -3, b].
Proof. (i) Let f(a) > 0. Since f is right continuous at a, corresponding to any
€>0, 38> 0 such that
| fx) —fla) | <e,x€ |a,a+d)

= fl@) —e<fx)<fla) + &, x€ [a,a+))
Taking € = f(a), 0 < f(x) <2f(a), x € |a, a +d)
= f(x) > 0. (v fla)>0)

Proof for the case f(a) < 0 is similar.
W) Let f(c) > 0.
Take €= % >0

Then 3 § > 0 such that
| fx) —fle) | <e, | x—c | <3

= flo—e<fly<floy+e | x—c| <3
= flo) =50 <f<flo+ 5 fle), | x—cl<3
N f@> 1 f)>0, | x—c|<?

Proof for the case f(c) <0 is similar.
(tit) Proof is left for the reader as an exercise.

Remark. The above theorem asserts that if a function is continuous at a point, then its
sign is invariable near the point.

Theorem

Let f be a continuous function on R. Then,

(@) theset A =[x e R | f(x)> 0] is an open set
@) the set B=[x e R | f(x) < 0] is an open sel
@it) theset C =[x e R | f{x) =0]is a closed set.

Proof. (i) Leta e A.

= f(a) > 0.
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Since fis continuous at a, there exists & > 0 such that
f(x)>0forxe (-3, a+9)
= xe(@—-96,a+dcCcA
= Ais a neighbourhood of a.
Since a is arbitrary, this implies that A is an open set.
(1) Proof is similar to (7).

(1) Since C =R — (A U B), it follows that C is a closed set.
Cor. Let f be a continuous function on R and c¢ any real number. Then,
(@) theset A={x e R | f(x) <c}is an open sel

@) the set B={x € R | f(x) >c} is an open set

@it) the set C={x € R | f(x) =c} is a closed set.
Proof. (i) Define a function g as :

gx)=f(x)—c, VxeR.
Since f1is continuous on R, g is continuous on R.
the set {x € R | g(x) <0} is an open set
= theset{xe R | f(x) —c <0} is an open set
= theset A={xe R | f(x) <c}is an open set
Proofs of (17) and (i17) are on similar lines.

Theorem

A function f: R—— R is continuous on R if and only if for every open set A in R,

[1(A)is open in R.

Proof. Let fbe continuous on R.

Let A be an open subset of R.

If f~1(A) = ¢, then it is open

So, let [HA) 20

Let aef1A) = fla)e A

Since A is open, A is a neighbourhood of each of its points.
3 &> 0 such that (f(a) —¢, fla) + &) C A

Since f1s continuous at a, (for above € > 0) 3 8 > 0 such that
| fx) —f(a) | <¢ for | x—a | <die,xe (a—3,a+d)

Hence, xe (@-986,a+d) = [fx)e (fla)—¢, fla) +e) A

= xe 1A

= ac@-8,a+dcfA)

= [~1(A) is a neighbourhood of each of its points

= [~1(A)is open.

Conversely, let f be not continuous at a.

Then, there exists an € > 0, such that for any § > 0, there exists x, such that | x,

—a | <8but
| fx) —fl@) | & te, flx) e (fla)—¢, fa)+e).

Therefore, every open interval (@ — 3§, @ + d) containing a, contains an x, such

that f(x,) ¢ (fl@) —¢, fla) + ¢

= [~ (f(a) —¢, f(a) + €) is not an open set. This contradicts the given hypothesis
(+ (fla) — &, fla) + €) is open). Hence, f is continuous at a. Since a is arbitrary, fis

continuous at every point of R.

Continuity of Functions
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Cor. A function f: R—— R is continuous on R if and only if for every closed set

Ain R, f1(A)is closed in R.

NOTES
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has the Lu.b. ¢ (say). We shall show that @
f(c) = 0. Suppose that f(c) < 0.

Proof. Let fbe continuous on R.

Let A be a closed subset of R

= Afis an open subset of R

= [71(A9is open

= (! (A)°is open

= f1(A)is closed.

Conversely, for a closed set A, let £ ~1(A) be closed.
= Acand (f ' (A))° are open

= Acand f~! (A% are open

= fis continuous on R.

Theorem

If a function fis continuous on a closed interval [a, b], f(a) and f(b) are of opposite

signs, then there exists at least one point ¢ € (a, b) such that f(c) = 0.

Proof. By considering, if necessary, the a

function — f, we can assume without loss of (b, f(b))
generality that f(a) <0 and f(b) > 0.

Let S={x:x¢€ [a, b] and f(x) <0},
S#¢ (aes)
Also S 1s bounded above (© b=u.b.S)

x

—=-===u
\N

=

I

(]

x

nop------

o

v

by completeness property of reals, S

[
—_

(a))

Then ¢#b ("~ f(b) >0) and by the continuity of f at ¢, 38 > 0 such that
fx)<0,x€ [c, c+d).

= f(c+%)<0.

= c+ % e S, which contradicts the fact that

c=1lub. S.
Hence, f(c) & 0.
Suppose that f(c) > 0. Then ¢ # a (" fla) <0)
By continuity of fat ¢, 38 > 0 such that

f(x) >0for x e (c -39, c].

Since ¢ =l.u.b. S, there exists t € Ssuch thatc -8 < <ec.
Now te S = f(t)<0
Since te (c—9,c], f(t) > 0.
This gives a contradiction. Hence f(c) =0 and ¢ #a, ¢ # b.
Cor. 1. (Intermediate Value Theorem)
If a function f is continuous on a closed interval [a, b] and f(a) # f(b), then [

assumes every value between f(a) and f(b).



Proof. W.l.o.g, we assume that f(a) < f(b). Let & be any number such that
fla) <k < f(b).
Consider a function g defined on [a, b] such that
g(x) = flx) — k.
Now g is continuous on [a, b] and g(a) = f(a) — k,
2(b) = f(b) — k are of opposite signs.
Therefore, 3 ¢ € (a, b) such that g(c) =0, i.e., f(c)=Fk.

Remark. Converse of Intermediate Value Theorem need not be true. For example,

x, 0<x<1
x—1 1<x<3

Let flx) = {

Then f(x) assumes every value between f(0) =0 and f(3) =2 as x moves through 0 to 3 but
[1s not continuous on [0, 3].

Cor. 2. A function [, which is continuous on a closed interval [a, b], assumes
every value between its bounds.

Proof. Since the function fis continuous on [a, b], it is bounded and attains its
bounds on [a, b].
3 two numbers o and p in [a, b] such that f(o) = M and f() = m, when M and
m are the L.u.b. and the g.Lb. of /.
Since fis continuous on [a, b], it is continuous on [f, o or [a, B] (according as
o> B and o < p).
Hence, f assumes every value between f(c)) and f(B) (i.e., the function assumes
every value between its bounds).
We also say that the range of a continuous function on a closed interval, is a

closed interval, or that the image of a closed interval under a continuous function is a
closed interuval.

MONOTONIC FUNCTIONS

Let f be a function defined on [a, b]. Then,

(@) the function f is said to be monotonically increasing on [a, b], if for

Xy, X, € [a, b], x; > x, implies f(x,) > f(x,).

@i1) the function fis said to be monotonically decreasing on [a, b] if for x,, x, € [a, D],
x, > x, implies f(x,) < f(x,).

(i1) the function f is said to be strictly monotonically increasing on [a, b] if for
X, X, € [a, b], x; > x, implies f(x,) > f(x,).

(tv) the function, f is said to be strictly monotonically decreasing on [a, b] if
for x,, x, € [a, b], x; > x, implies f(x,) < f(x,).

(v) the function f is said to be monotonic if it is either monotonically increasing
or monotonically decreasing.

Theorem

(Continuity of inverse function). If a one to one function fis continuous and strictly
monotonic on [a, b], then [~ is also continuous on [f(a), f(b)] or [f(b), f(a)] according as
fis increasing or decreasing.

Self-Instructional Material
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Calculus—1 Proof. Since the function fis continuous and strictly monotonic on [a, b], f is
bounded and attains its bounds at a and b.

. 3 real numbers m and M such that
NOTES flay=m, fb)=M or fla)=M, f(b) =
according as fis strictly monotonically increasing or decreasing.
= range of fis [f(a), f(b)] or [f(b). fl@]
according as fis strictly monotonically increasing or decreasing.

Since [ is one to one, [~ exists. .. f~!is a function with domain [f(a), f(D)] or
[/(b), f(a)] according as fis strictly monotonically increasing or decreasing.

Let f'be strictly monotonically increasing.
= flis afunction with domain [f(a), f(b)].
We shall show that f~! is continuous on [f(a), f(b)].
Let ¥, € Ifl@), f(b)]
= J some x, € [a, b] such that [~ (y)) = x,, i.e., flx,)) =,
Let € > 0 be given
Let fxy—8)=y,—-98, and flx,+¢)=y,+3,,
where §,, §, are necessarily positive numbers.
Since fis strictly monotonically increasing,
xe (x,—¢ x,+te) = fv)e [flx,—¢), flx,+ 9]
e, fx) € [y, —98,, y,+ &l
If § = min {5,, 3,}, then (y, -8, y, + 8) < (flx, —¢), flx, + €))
xe (x,—¢ x, ¢ fory=flx)e (y,— 9, y,+9)
ie., | x—x, | <e for [y—y,| <3
i.e., | o) - | <e for | y—y, | <8
= f~1is continuous at y, € [f(a), f(b)]

Since y,, is arbitrary, f~! is continuous at every point of [f(a), f(b)] and hence [~
is continuous on [f(a), f(b)].

Similar is the case when f is strictly monotonically decreasing.

UNIFORM CONTINUITY

Recall that if a function f is continuous at a point x,, of the closed interval [a, D],
then given any € > 0, there exists a § > 0 such that | f(x) — f(x,)) | <& whenever
| x —x, | <3&. This & depends not only on ¢ but also on the point x, at which the
continuity is considered. That is, if € > 0 remains the same for different points of the
interval [a, b], then the choice of 5 may not be the same. If it is possible to find one
8 > 0 depending on ¢ such that | f(x) — f(x)) | <& whenever | x —x, | <38 and
x, &, € [a, b], then we say that the function in uniformly continuous. More precisely.

Definition. A function f1s said to be uniformly continuous on the interval [a, b]
if given any € > 0, there exists 5 > 0 (depending on € only) such that | f(x,) - f(x,) | <e,
whenever x,, x, € [a, bjand | x, —x, | <§.
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Remarks 1. The notion of uniform continuity of a function is a global concept. It does
not make sense to say that a function is uniformly continuous at a point, while continuity is a
local property.

2. One may think that the g.l.b. of the set of all values of § corresponding to different
points of [a, b], would serve the purpose of 8 for uniform continuity on [a, b]. But it is not so as
the g.1.b. of a set of positive numbers may be zero.

3. A function fis not uniformly continuous on [a, b] if 3 some € > 0 for which no 8 works,
L.e., for any § > 0, 3 x,, x, € [a, b] such that | f(x)) — f(x,) | Zeand | x; —x, | <3d.

Theorem

If a function f is uniformly continuous on [a, b], then it is continuous on [a, b].
Proof. Let fbe uniformly continuous on [a, b]
Let € > 0 be given.
Since fis uniformly continuous on [a, b], there exists § > 0 such that
| flx)) —flxy)) | <e Vx,x€a, b and |x;, —x, | <3d.
Let ¢ € |a, b].
Taking x, = x and x, = ¢, we have for ¢ > 0, 38 > 0 such that
| fx) —fle) | <g,for | x—c | <8
= fis continuous at ¢, any point of [a, b]. = fis continuous at every point of
[a, b].
Note. In fact, we can consider any interval open or semi-open in the above theorem.
Remark. Converse of the above theorem need not be true. For example, consider the

function f defined by

1
f(x)zz, xe (0,1)

Since x is continuous on (0, 1) and x # 0, therefore T is continuous on (0, 1).

1
Again, for any 8 > 0, 3m € N such that — <8 V n>m.
n

1 1
Let X, = om and x,= Ll that x;, x, € (0, 1),

IS T T S
|x1_x2|_ 2m m —2m<2 <90.
and | fe) —flx) | =1 2m—m|=m
which cannot be less than every € > 0.

Hence [ is not uniformly continuous on (0, 1). This can also be seen geometrically as
follows :
. . 1 .. .
Consider the graph of the function f(x) = S on O, 1). If we divide the interval

(0, 1) into subintervals of equal width, then the increment in the values of f(x) are not
equal, showing thereby that the function is not uniformly continuous on (0, 1).
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NOTES
X" 0 1 ;
Y Graph of F(x) = %

Theorem

If a function [ ts continuous on [a, b], then fis uniformly continuous on [a, b].
To prove the above theorem, we first prove the following Lemma :

Lemma

If a function f: [a, b] — R is continuous on [a, b], then for given € > 0, [a,
b] can be divided into a finite number of sub-intervals such that
| f(x,) - f(x,) | <¢ whenever x, and x, lie in the same sub-interval.

Proof of Lemma :

Let if possible, the result be false. Then, there exists none X > 0, such that for no
subdivision of [a, b], | f(x;) — f(x,) | <& for x;, x, in the same sub-interval.

Divide [a, b] into two equal sub-intervals. Then, the result is not satisfied in at
least one of the two sub-intervals. Call the sub-interval [a,, b;] in which the result is
not satisfied. Again divide [a,, b;] into two equal sub-intervals and then the result is
not satisfied in at least one of the two sub-intervals, say [a,, b,] and so on. In this way,
we get a nested sequence of closed intervals with lengths :

1 1
bl—a1=§(b—a),b2—a2=2—2(b—a), ...... and so on.

1
bn—an=2—n(b—a)—>Oasn—>oo
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Therefore, by Nested Interval Property,
ﬁ l[a,. b,]=1{x.}. (say) . and x, € [a, b].
n=1

Case (i) x, € (a, b)

Since fis continuous on [a, b]
fis continuous at x, also.

*. 36 > 0 such that

@) ~fg) | <5 Vxe (=8, x5,+)

Also, b, —a, > 0asn — e
. We can choose a + ve integer n such that b, —a, <4.
(@, b)c(x,—9, x,+9).

@ ~fw) | <5 .V xe @, b,).
Let x,, x,€ (a,, b))
[ o)~ fwg) | <5 and | fie) —fg) | <5
| fe) =) | =1 fley) — fg) + fey) — fisy) |
<1 fe) —fae) |+ 1 fwy) —fo) | <

the result is satisfied in (a,, b,)

+ - =&

£
2

no|m

which is a contradiction to our supposition.
Hence the Lemma is true.
Case (ii) x,=aorx,=b
If x, = a, then the result follows from above by taking the interval (a, a + ).
If x, = b, then the result follows by taking the interval (b —§, b).
Proof of Theorem. Let € > 0 be given.

Since it is continuous on [a, b], therefore by the Lemma, the interval [a, b] can
be divided into a finite number of sub-intervals

l[a, y,1, [y;. sl .. , [y, bl, (say) such that whenever x,, x, are in the same sub-
interval,
€
[ fle) —flx) 1 <5 (1)
Let d=min. {y, —a, y, —y;, ...... ,b—y >0
Now, if x;, x, € [a, b] with | x; —x, | <8 (2

then either x, x, belong to the same sub-interval or they belong to two consecutive
sub-intervals.

Case (i) x,, x, belong to the same sub-interval

[ fw) —fw) | <5 <e By (1)]

Case (i) X, X, lie in consecutive intervals
Let y, be the point of division of two sub-intervals in which x, and x, lie.
x;, ¥; lie in the same sub-intervals and y,, x, lie in the same sub-interval.
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@)~ fo) | <5 e
€
NOTES and | fy) —flx,) | < 2 (4
Now, [ fle) —flxy) | =1 [flxy) =[] + [fy) — flx))] |
< fe) —f) |+ 1 fy) —flxy)
<EL B .
2 2 ©

Thus, x;, x, € [a, b] with | x; —x, | <3,

| flx) —flx,) | <e.

Hence f is uniformly continuous on [a, b].

Theorem

Let K be a compact set. If a function f: K — R is continuous then fis uniformly
continuous.

*Proof. Let € > 0 be given.

Since fis continuous at a point & € K, there exists a 5(§) > 0 (5(§) depending upon
eand &) such that xe Kand | x—& | <3()

= 1@ -1 | <.

Now, the open sets ( —%&),§+%§)), ¢ € K, form an open covering of K.

Since K is compact, by Heine-Borel Theorem, there exist finitely many points

3 3
€.& ... , &, such that the sets (‘t:i (&) g + (&) ) 1 <1 <n, form an open covering
of K.
Let d=min §(&) >0
1<i<n
Let x,ye Ksuchthat | x—y | <§ (D)
3 S(E;
Let ( (é l%q 2
Now, | &, y|=|<‘,—x+x y
SlE-xl+x—yl
S(E.
<0, 2 [By (1) and @)]
<38(E)
- &) 1) | < e
Since g <2 By @]

*Not included in K.U. syllabus.
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@) —1E) | <5 ()
Now, | f) —f) | =1 flv) - &) + fE) —fy) |
< §+§ —¢ [By (3) and (4)]

Hence, fis uniformly continuous on K.

Cor. A function which is continuous on a closed interval [a, b], in uniformly
continuous on that interval.

SOLVED EXAMPLES

Example 1. Show that the function

_ sinl, x#0
flx) = X
0, x=0

1s discontinuous at x = 0 and the discontinuity is of second kind.

Sol. We shall show that 1im0 [(x) does not exist.
Let, if possible, lim0 /(x) exist and be [.

Take € = % Then 38 > 0, such that

sinl—l
x

Let0< | x, | <dand 0< | x, | <3d.

<%,Whenever0< x| <38

1 .1 o1
Then, sin— —sin — | =||sin—=0|-|sin—-1{
xq X X1 X
<|sin—-[| + sin——l‘
x4 X
<l+l 1
2 2
Taking v, = —~ g o1
a mgxl_2n7‘c+rc/2’ x2_2nrc—rc/2

with n so large that | x; | and | x, | are both <3. (This is possible by Archimedean
property of reals), we have

sin 2nn+E —sin 2nn—E
2 2

i.e., 2<1 [ sin (Znn + g) =sin g =land sin (Znn - g) =- 1}

<1

. o1 .
This contradiction implies that hrrh sin — does not exist.
x— X
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Calculus—I Example 2. Show that the function

() = xsinl, x#0

x
0 , x=0
NOTES s continuous for every real x.
Sol. Letxe R
Case (1) x=0.
Let € > 0 be given. Then, for = ¢, we have
.1 .
Now, | f(x) —f(0) | = xsm;—O‘: xsm;
.1
=lxl|smm—|<|x|<eg
x
.1
if | x| <e |: sin — <1:|
x

Taking 6 = ¢, | f(x) —f(0) | <e, whenever | x | <9
Thus, f1is continuous at x = 0.
Case (11) x # 0.

Then, 1/x is continuous and sin 1/x is continuous. Since product of two continuous
functions is continuous, it follows that x sin 1/x is continuous at x.

Example 3. Dirichlet’s Function. Show that the function
1 if xisrational
o) = {—1 if x is irrational
s discontinuous for every real x.
Sol. Case (i) x is a rational number.
Since in any interval there lie infinity many rationals as well as irrationals, for
each n € N, there exists an irrational number x_ such that

1 1 1
x——<x <x+— = lx, —x | <—
n n n
= the sequence <x > is convergent to x.
But, flx)=—-1 Vn, and flx)=1
< f(x,) > 1is convergent to — 1 # f
fis discontinuous at x, any rational number.
Case (i1) x ts any irrational number.
Since in any interval, there lie infinitely many rationals as well as irrationals,
for each n € N, there exists a rational number x, (say) such that
1 1 1
x——<x, <x+— = lx, —x|<—
n n n
= the sequence <x > is convergent to x.
But, f(x)=1 Vn, and flx)=-1
< f(x,) > is convergent to 1 # f(x)
fis discontinuous at x, any irrational number.
Example 4. Show that the function f defined by
x, If xisrational
[t = {— x, if xisirrational
continuous only at x = 0.
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Sol. Case (i) x is a non-zero rational number.
For each n € N, there exists an irrational number x, such that

1
x——<x, <x+— = lx, —x|<—
n n n

= the sequence <x > is convergent to x.
But, ftx,))=—x, Vne Nandf(x)=x
< f(x,) > is convergent to — x # f(x)
fis discontinuous at x, any rational number.
Case (11) x ts an irrational number.
Proof is similar to case (7).
Case (111) x=0
Let € > 0 be given.
Now, for a rational number x,

| f)—f0) | =1 x| <e for |x|<e
and for an irrational number x,
| f)—fO) | =1 -x|=1x|<e for | x]|<e

for any € > 0, 38 (=€) > 0 such that
| f(x) —f(0) | <&, whenever | x—01] <95
= fis continuous at x = 0.
Example 5. Show that the function f defined by
fl(x) =22 - 3x+5

1s uniformly continuous on [- 2, 2J.

Sol. Let € > 0 be given

Let x,, x, be any two points of [- 2, 2]

Then, | flx,) —flx,) | = | 2(x,% —x,2)— 3(x; —x) | = | (¥, —x)(2(x; + x,) — 3) |
=l x,—xy || 20, +x) -3 |
Slay—wy 12012y [+ 1x,1)+3 ]
<lx—x, | [22+2)+ 3] (v lx1<2

B €
=11. | x,—x, | <efor | x, —x, | BT

€
forany e >0,398 (: E) such that

| fle) —flx,) | <efor | x, —x, | <3.
= fis uniformly continuous on [~ 2, 2].

Example 6. Prove that the function f defined by

1
f(x) =sin R R

s continuous but not uniformly continuous on R*.

1 . L .
Sol. For x € R*, — is continuous and sin x is continuous for each x.
X

.1 :
sin — 1s continuous for x € R*.
x
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1
Now for any > 0, 3m € N such that ——— = <39
2m (mn + n)
2
NOTES
1 1

Take X, = , Xy =

T mmn

mn+ —

2

Then x,, x, € R*
1 1 1
| x, —x, | = —— | = <3J
172 T mn ( n)
mm+ — 2m | mm + —
2 2
. i .
but | flx,) —flx,) | = |sin (mn + EJ —sinmn| =|cosmn | =1
(o sin mm = 0)
which is not less than each € > 0.

Hence f is not uniformly continuous.

Example 7. Examine for continuity the function f defined by

e —x" sin x

flx)= lim

,0<x<

K]

I1+x"

) . . i
atx=1. Explain why the function [ does not vanish anywhere on [0, —] although

ﬂw¢(5)<a

0 ifo<x<l1
Sol. Since lim x"= 1 ifx=1 ]
"o e if1<xg_
2
e’ if0<x<1
o e*—x"sinx e—sin1 —
f(x)—nlglzo Tt e" _ 5
—sin x if1<xg£
lim fx)= lim e"=e
x -1 x—1
lim f(x)= lim (-sinx)=—sin1
x—1" x 1"
lim f(¥)# lim f(x)
x—1" x—1"

= lim f(x) does not exist
x—1

= f(x) is discontinuous at x = 1

Now f(0)=¢e"=1.
n = — 1 E = —
Also f (5) = —sin 2 1.
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f«»f(g) =-1<0,
Since 1, the point of discontinuity of f belongs to [0, g], f is not continuous NOTES

on [0, g] Intermediate value theorem is not applicable.

Example 8. Prove that the function f defined by f(x) = x%, x € R is uniformly
continuous on every finite closed interval but ts not uniformly continuous on R.

Sol. Let [a, b] be a finite closed interval.
Let € > 0 be given.
Letc=max. {l al, | b |}>0.

Let x;, x, € [a, b] be any two numbers.

lx, [ <c¢, lx, | <c (D)
Now, | flae)—flx) | =1x2 —x21=1x+x, | | x —x, |
Sy I+ lTay D)oy —x, 1 <2 | x,—x, | [By (1]

€
| flx;) — f(xy) | <€ whenever | x, —x, | < %

ie., | flx,) —flx,) | <& whenever | x, —x, | <3

where 6 = £ > (.
2c

Thus | f(x,) —f(x,) | <ewhenever | x;, —x, | <3, V x;, x, € [a, D]
.. [1is uniformly continuous on [a, b].
To show that fis not uniformly continuous on R

To show this, we have to show that for any given € > 0 and any 8 > 0, we can find
x;, X, € R such that

| flx)) —flxy) | Zebut | x; —x, [ <d.
Define a sequence < a, > such that

2¢
a =n+2 -Jn=—r-r-—r
" Jn+2 ++n
asn— o, a, — 0.

for given 8 > 0, there exists a positive integer m such that
| a,—0 | <& whenever n>m.

= | Jn+2¢ —n | <8 whenever n>m.
In particular, taking n = m,

| Jm+2e —Jm | <35 )
Taking x, = ym +2¢€  and x, = Jm so that from (2)
| x;—x, | <dbut | flx))—flx,)) | =l m+2e—m|=2>¢
Thus, we have found x,, x, € R such that | x; —x, | <& but
| fle) — flxy) | > e

Hence, fis not uniformly continuous.
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2.

EXERCISE

Give one example of each of the following :
(@) A function on [0, 1] which is continuous everywhere except the end points.
(i1) a function on [1, 2] which is continuous everywhere except at 3/2.
(111) a function continuous on (0, 1) but is not bounded.
(iv) a function which is bounded on (0, 1) but is not continuous.

(v) a function f continuous no where but | f | continuous everywhere.

Examine the continuity of the following functions at the indicated point :
2 p—
x3 8 . X T2 ifxx2
@) flx) = ,at x =2 @) flx) =1 x -2 at x = 2
5 , ifx=2
if 2 Lt if x#2
(iif) f(x) = Hx#2 tx=2 (V) f() = {x-2° at x =2
ifx=2 0, ifx=2
1 .
(-2 2) ) xcos—, ifx#0
) flx) = fx#2 50 x=2 ) flx) = x| at xe R
ifx=2 1 , ifx=0
x - |.’)C | x
Wi f@w=1"= " **Catxer (iii) f(x) = =l i v=o
x
2 , x=0
i 1
e¥ —e ¥ l-cosx .
—, ifx#0
i fw=11 1 00 ww=1 2 > " ax=o0
e* e X 1 , ifx=0
0 , ifx=
1
(i) fX) = [x] on R*at x =1, 2, 3, ... (xid) f(x) = 1e* ;220
0;x=0
Also, discuss the type of discontinuity in each case.
Discuss the continuity at 1, 2, 3 of the following function :
bx + 4, x<1
CJx?4+Tx 41, 1<x<2
fl) = x +3, 2<x<3
5x + 2, x =3
Obtain the points of discontinuity of the function defined on [0, 1] as follows :
0 ifx=0
1 : 1
? - if 0< Ji < 9
f(y) = g lf.’)i = 9
§ - lf E <x<l1
1 ifx=1

Also, examine the kinds of discontinuities.
(a) Show that the function f defined by

1,
f) = {0’

is discontinuous at every point and discontinuity is of second kind.

if x is rational
if x is irrational

if x is rational

if x is irrational 15 discontinuous for each real x.

(b) Show that f(x) = {_ § ’
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11.
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15.

16.

17.

18.

19.

20.

Show that the function f defined by
x, if x is rational
[ = {— x, if x is irrational
has a discontinuity of second kind at every real number except 0.
(a) Show that the function [x], where [x] denotes the largest integer < xis discontinuous
at each integral value and the discontinuities are of first kind.
(b) Show that the function x — [x] is discontinuous at every integral value of x and all
discontinuities are of first kind from left.

(a) If a function [ satisfies the inequality f(x) < x, V «x, then show that fis continuous
at x=0.

(b) Let f be a continuous function at x = 0 and f(0) = 0. If g is another function such
that | glx) | < | f(x) | V x, then g is continuous at x = 0.

Show that the function f(x) = x2 is uniformly continuous on [ 1, 1].
Give an example of each of the following :

(1) a continuous bounded function on R may attain the L.u.b. but may not attain the

g.lb.
(i1) a continuous bounded function on R which attains the g.1.b. but not the l.u.b.
(i) a function continuous on an open interval but may fail to be uniformly continuous.

If fand g are two continuous functions on [a, b] such that f(a) < g(a) and f(b) > g(b), then
show that there exists a real number ¢ € (a, b) such that f(c) = g(c).

[Hint. Apply Intermediate Value Theorem to the continuous function f— gon [a, b].]

1
If f: (0, =) — R is a function defined by f(x) = L prove that fis uniformly continuous on

[@, =) where a > 0. Show that fis continuous but not uniformly on (0, o).
Show that the function :
|y, if yisirrational
00) = {— y, if yis rational
is continuous only at y = 0.
[Hint. Proceed on lines of Example 5.]

If a function fis continuous and strictly monotonically decreasing in [a, b], then [ is

also continuous in [f(b), f(a)].

[See Th. 6.4.14]

If a function fis continuous on R, then prove that the set B={x | x€ R and f(x) <0} is an

open set.

(a) Prove that the function f, defined by f(x) = x> — 3x + 5 is uniformly continuous on
[~ 3, 4].

(b) Show that the function of defined by f(x) = 2x% + 3x — 4 is uniformly continuous on
[0, 2].

1
e* 1l ix0
Show that the function f(x) =14 1 o *
e* +1
0, x=0
is discontinuous at x = 0. Write the type of discontinuity.
1 if x <3
Let fx) = jax +b if 3<x <5
7 ifx>5

Determine the constants a and b so that f may be continuous.
Prove that the function f(x) = x2 is not uniformly continuous on (= o, o).
[See second part of example 9]

If f(x) and g(x) are continuous functions on [a, b] then f(x) + g(x) is also continuous on

[a, b].
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Calculus—I

NOTES DIFFERENTIABILITY

STRUCTURE

Introduction

Derivability or differentiability at a Point

Left and Right Hand Derivatives at a Point
Derivability on an Interval

Relation between Continuity and Differentiability

Points to Remember

LEARNING OBJECTIVES

After going through this unit you will be able to:

e Derivability or differentiability at a Point

e Left and Right Hand Derivatives at a Point

e Derivability on an Interval

e Relation between Continuity and Differentiability

e Points to Remember

INTRODUCTION

In the previous chapters, we studied the functions, limits and continuity. In
this chapter, we will use the concept of limit to introduce the idea of differentiability.
It help us to study rates at which physical quantities change.

DERIVABILITY OR DIFFERENTIABILITY AT A POINT

Let f(x) be a real valued function and a be any point in its domain. Then, f(x) is
said to have a derivative at x = a if and only if f(x) is defined in some neighbourhood of
a and

lim fla+h)-f(a)
h—0 h
where h be any small but arbitrary (positive or negative) number.

exists finitely.

The value of this limit is called the derivative of f(x) at x = a and is denoted
by /7 (a).
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i.e., f(a) = lim fla+h)-fla) ‘
h—0 h
Now, f(x) is differentiable at x = a, if and only if lim Lz(a) exists finitely.
x—a x —
Also, lim ZAC i i) exists if and only if lim @)= 1@ and lim @ -1
¥oe  x-—a x—>a x—-a x—a x—a
or lim M)h_f(a) and lim flath)-fla) both exist and are equal.
h—0" - h—0"

LEFT AND RIGHT HAND DERIVATIVES AT A POINT

If the function f(x) involves modulus function, bracket function and/or is defined

fla+h)-f(a)
h

by more than one rule, then lim

may depends upon the sign of increment
h—0

h of x. In such cases, we calculate,
lim @+ =@ g iy [@tP)= /@) h}z AC)

h—0" h h—0"
These limits are called Left Hand Derivative of f(x) at a and Right Hand
Derivative of f(x) at a and are denoted by Lf’(a) and Rf’(a) respectively.

separately.

Left Hand Derivative :  Lf’(a) = hlin()l’

h
. h) -
Right Hand Derivative : Rf(a) = h11n01+ w

It may be noted that, Lf "(@) # Rf "(a) implies that f(x) is not differentiable
at x = a.

DERIVABILITY ON AN INTERVAL

A function f(x) is said to be derivable (or differentiable) on an open interval
(a, b) if : f(x) is derviable at every point in (a, b).

A function f(x) is said to be derivable (or differentiable) on a closed interval
[a, b] if :

(@) It is derivable in the open interval (a, b).
(1) It is right derivable at ‘@’ and left derivable at ‘b’.

RELATION BETWEEN CONTINUITY AND
DIFFERENTIABILITY

Theorem. Fvery differentiable function is continuous, but every continuous
function may or may not be differentiable.

Differentiability

NOTES
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Calculus—1 Proof. Let f(x) be a differentiable function and let a be any point in its domain.

. h) -
Then, /(@ = lim w ()
NOTES Now, lim [f(a + h) — f(@)] = lim [—f(a +h) - fla) X h}
h—0 h—0 h
= lim (M). lim p
h—0 h h—0
=/"(a@) =0 [By using (1)]
=0
= ,1135 [fla+h)—fa)] =0
= lim fia + ) = fa).

This shows that f(x) is continuous at x = a. So, every differentiable function is
always continuous.

Now, in order to show that the converse is not true i.e., every continuous function
need not be differentiable, let us consider the following example :

Let f(x) = |x| at x=0.

xli—>nol’ f(x) %1_{% f(0 —h)=%i_r)% (= h)

= 1. — = 1. =
hl—% |—hl hl_% (h)=0.

And, lim f(x)

x—0*
Also, f(0)=10] =0.
hIBl’ flx) = hIBl* f(x) = f(0) = 0.

1 — 1 = 1. = 1. =
%l_r)l})f(0+h) %1{)% fiy = b [ p| = Im ) =0

f(x) is continuous at x = 0.
Now, let us check the derivability of f(x) = |x| at x=0.

LHD,  1f'@= lim %)h‘f“)) [ f @~ lin fla+ h}z - f(a)}

i fGR-FO L fR-0 (—_hjz_l‘

R0 +h h>0" +h  ho0\+h
RH.D., Rf(0) = lim 10XP=1© [ (@)= lim f(a+h)—f(a)}
h—0* h r 0 h
= Jim WO _ g 12120 _ iy (ﬁ) =1.
h—0* h =0t h r—0\ A

Lf7(0) # Rf(0).
[(x) 1s not differentiable at x = 0.
Hence, f(x) = | x| is continuous at x = 0, but not differentiable at x = 0.
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Remark. (1) Continuity is not a sufficient condition i.e., every continuous function may
not be differentiable.

(i1) Continuity is a necessary condition for differentiablility i.e., if a function is not con-
tinuous at some point a, then, it cannot be differentiated at that point.

POINTS TO REMEMBER

() All constant polynomials are differentiable for all x € R.
(1) All polynomial functions are differentiable for all x € R.
(111) The exponential function a* (a > 0) is differentiable for all x € R.
(tv) The logarithmic function is differentiable at each point of its domain.

(v) Trigonometric and Inverse Trigonometric functions are differentiable in
their domains.

(vi) The composite function of two differentiable function is also differentiable.

(vit) The sum, difference, product and quotient of two differentiable function is
also differentiable.

SOLVED EXAMPLES

Example 1. If fis differentiable at x = a, then prove that :
xf( a) - af(x)

x—>a X —

=fla) - af '(a).

Solution. Since fis differentiable at x = a.

vin_ 1. [fla+h)-f(a)
f (a)_llzl—IH)T (1)
Now, L.H.S. we have, lim [M}
x—a xXxX—Qa
Put x=a+h = h—0asx—a
lim xf(a) —af(x) lim (a +h)fla)-af(a+h)
= x—a X —a _h—>0 a+h-a
|:af(a)+hf(a) af(a+h):|
hf (@) —a f(a+h) f(a)]
h—>0
~ lim hf(a) alf(a+h) - f(a)
h—0 h
_ . fla+h) - f(a)
= fla) —a hn}) —
= fla) —af "(a). [By using (1)]

Differentiability

NOTES
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NOTES

Example 2. Show that the function f(x) =x2 for x <0 and f(x) = x for x > 0 is not

derivable at x = 0.

2
Solution. We have, fx) = {x
x
LHD. Lf’(0) = lim
h—0"
= lim
h—0"

R.I.D. Rf’(0) = lim

h—0*

lim

h—0"

;<0
;>0
w [ [t =* for x< 0]
W?* =0 _ i ) =0
h _h—>07

O +h)-f©
h

(ﬂ) = lim 1=1
h h—0"

[ f(x) =xfor x> 0]

Lf7(0) = Rf7(0)

= f’(0) does not exist.
= f(x) is not derivable at x = 0.

Example 7. If f(x) is differentiable at x = a, then evaluate :

lim

x? fla) - a® fix)

x—a xXxX—Qa

Solution. Since f(x) is differentiable
f’(a) = lim
h—0
2 2
We have, lim M
x—a X —Qa

Put x=a+h = h—0asx—a

(x“‘f(a) - a“‘f(x)J i
h—0

lim
x—a xXxX—Q

= lim
h—0

= lim
h—0

= lim
h—0

= lim

h—0

— lim
h—0

= fl@) (0 + 2a) — a*f'(a) [

atx=a,

f(a-i—h]z—f(a) (D

at+h-a

[(a +R)? f@) - a’f(a+ h)}

(@? +2ah + h?) f(a) - a® fla+ h)J
h

[a2f(a) + 2ahf (@) + B2f (@) - a®f(a + h)}
h

Chf(@) (h+2a)—a® [Fla+h) - f(a)]}

h
(MJ_ az(w)
h h

By using (1)]

= 2af(a) — a*f'(a).
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Example 4. Prove that the function f(x) defined by :

2

+1 ;x<1| . .. .

f(x) = X ¥ 1s differentiable at x = 1.
2x ;x>1

Solution. We have,

2

x“+1 ;x<1
x:
f© {2x ;x>1}

 F0E0= )

LHD.Lf’'(1) = [ fx)=x*+1forx<1]
[ [(1+ h)2 —((D? + 1)1
(1+h2 +2h+1- 2]
= lim
h—0"
_ (h(h+2))_ lim (h+2) =
h—0"
RILD. Rf'(1) = lim (f(“h)‘f(l)) [+ fe) = 2cfor x> 1]
B (2(1+ h)—2(1)) ) (2+2h—2)
— lim | ————
h—>0+ h—0" h
= ;}Ef} (7) = hm 2=

Lf’(1) =Rf7(1)
[(x) 1s differentiable at x = 1.

Example 5. Show that the function f(x) = |x — 1| + |x — 2| is not derivable at

Solution. We have, f(x) = |[x = 1] + |x — 2|

LID. 1/ = lim (WJ

. ((|2+h—1|+|2+h—2|)—(|2—1|+|2—2|))
lim

h—0" h
_ (|1+h|+|h|—lll— )
= lim

h—0" h
= lim (M) [ |hl==hforh<0]
h—0" h
= lim (9)20

r—0"\ h

RHD. Rf/(2) = lim (—f @rh-f (2))

N h
~ m ((|2+h 1|+|2+A-2])-(]2-1]+]|2- 2|))
h—0* h
_ (|1+h|+|h|—lll— )
- m

N h

Differentiability

NOTES

Self-Instructional Material

63



Calculus—I

NOTES

64  Self-Instructional Material

. 1+h+h-1 . 2h .

= lim | ———— | = lim | = |= lim
h—0" h hr—0t\_h h—0"
. L) #Rf’(2)

= [f(x) is not differentiable at x = 2.

Example 6. Discuss the differentiability of the function :

()

@) =2

flx) = < xe ;x#0% at x = 0.
0 ;x=0
Solution. We have,
101
(1.1
flx) = xe(”'x) ;x#0
0 ;=0
LH.D. Lf'(0) = lim w}
h—0" h
[ 1 1 11
(0+h)e_[|0+h|+0+h) he_(WT)
= lim = lim
h>0- h h—0" h
- 101
= lim e_(m+z)
h—0"
(2
= lim e ‘"~ =lim &=1. [+ |h|l=—hforh<0]
h—0" h—0

RILD. Rf(0) = lim (

h—0*

fO+h) —f(O))
h

(@)

[0+ (0+))

~ lim O+h)e 0 — lim
h—0" h h—0"

I
5.

pe i)

h

[ Thl=hfor h>0]

. _ . 1
= lim ¢ %" = lim o
h—0" h—0" e
1 1
:—oo = — :O
e oo

Lf7(0) # Rf(0)
= f’(0) does not exist.
= f(x) is not differentiable at x = 0.



Example 7. Show that the function f(x) = {

Differentiability
ax?+1 ;x>1| . .

1s continuous at
x+a

sa<l1

x = 1. For what value of a, the function is differentiable at x = 1.

Solution. We have,

Continuity atx=1:

lim f(x) = hm xx+a)=10+a)

x—1"

And,

x—1"

Also,

[(x) 1s continuous at x = 1 for all values of a.

Derivability at x =1 :

L.H.D. Lf’(1)

= lim
h—0"

R.ILD. Rf’'(1) = lim

h—0" |

Ca(1+ R +1-(a+1)

= lim
h—0"

= lim
h—0"

= lim
h—0"

= lim

h—0" |
For differentiability of f(x) at x = 1, we must have,

L (1)

[(x) 1s differentiable at x = 1 for a = %

Example 8. For what choices of a, b and ¢, if any, does the function :

ax? +bx+c ;0<x<1
f(x) = bx —c ;1<x<2
c ;x>2

s differentiable at x =1 and x = 2.

lim f(x) = hm (ax?+ 1) =

= 0(1)2 t1=(a+1).
lim f(x) = lim f(x)
x—1" x—1*

=Rf'(1) = 1=2a = a=—

[(1+h+a) (a+ 1)}

a1+ h2+2h) +1—a— 1}

"o+ ah? +2ah—a}

[ h(ah + 2a)

NOTES

(@+1)

=fH=@+1

f(l+h) - f(l)}

[+ f)=x+aforx<I1]

o

+h+a a- 1) .
= lim

f(1+ h) f(l)}
h

7 ] [ flx)=ax?+1forx>1]

h

= lim
h—0"

} = lim (ah + 2a) =
h—0*

ah? + 2ah
h h
h

1
2
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Solution. We have,

ax? +bx+c ;0<x<1
flx) = bx —c ;l<x<2
c ;a>2

Differentiability at x =1:

LHD.Lf’(1) = lim W} [ f)=ax?+bx+cfor0<x
h—0" |
<1]
. _{a(1+h)2+b(1+h)+c}—(a.12+b.1+c)}
= lim
h—0" | h
. a(1+h2+2h)+b+bh+c—a—b—cj
= lim
h—0" h
L. a+ah®+2ah+bh-a) _ .. [h(ah+2a+b)}
= lim = lim | ——M—~
h—0" h h—0" h
= lim (ah + 2a+b)
h—0"
N Lf(1)=2a+b e
RILD. Rf’(1) = lim |T1*R =D f(l)}
h—0" | h
o _(b(1+h)—c)—(a.12+b.1+c)}
= lim
h—0" | h

[ fix)y=bx—cfor 1 <x<2]

. _b+bh—c—a—b—c}
lim
h—0" | h

. (bh—a—ZcJ L (bh a+2c)
lim | ———| = lim | — -
h—0* h h—0"\_h h

a+2c)

Rf(1)= lim (b -

Since, f’(1) exists, therefore we must have

a+2c=0
And, b=2a+b = 2a=0 = a=0
Also, at+t2c=0 = ¢=0 [~ a=0]
a=0andc=0.

Differentiability at x =2 :

LHD., Lf = lim [w}

h—0 h
L [(b(2+h)—c)—(b.2—c)}
= lim

h—0" h

[ fix)=bx—cfor 1 <x<2]



Differentiability

. _2b+bh—c—2b+c:|
lim
0| h

RHD. Rf'(2) = lim w}

= lim (@): lim (b)=0b.
h—0"\h N

0" | h NOTES

. _c—(b.2—c)}_ . [c—2b+c}
lim | ———— (= lim | ———
h—0* h h—0* h

) [ f(x) =cfor x> 2]

. (ZC - Zb)
= lim
N h
Since, f’(2) exists, therefore we must have
20-2b=0 = 2c=2b = b=0 [+ ¢=0]

a=0,b=0 and c¢=0.

Example 9. Show that the function f(x) =x|x| is differentiable at x = 0.
Solution. We have, f(x) =x | x|

LHD. Lf/(0) = lim | T@+*R-FO]_ 1 [O+m)[0+A]-0
h—0" h h—0" h

lim [—h“”'_o}

h—0" h

lim [Ahl [ [hl=—=hforh<0]
h—0"

= lim (~h)=0
h—0"

R.IL.D. Rf"(0)

L | f©+h) - f(O)}

h—0* h

. _(O+h)|0+h|—0}
lim
N h

lim M} [ |hl =hfor h>0]
r—0*| h

= lim [h|=1lm A=0
h—0* h—0"

Lf7(0) = Rf(0)
= f’(1) exists.
= [f(x) is differentiable at x = 0.

EXERCISE

Examine the derivability of the function :

100 3-2x ;x<4 ¢ 4
X) = x=4.
2¢-T7 ;x=24 A
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Find the value of p, if the function :

2 .
flx) = pe+1 jx=21 is differentiable at x = 1.
x+p ;x<1

Show that f(x) = |x— 5] is continuous but not differentiable at x = 5.

2+x ;x20

Let f(x) = ’ .
{2 -x ;x< O}

Show that f(x) is not derivable at x = 0.

x? sin 1. x#0
Show that flx) = x is derivable at x =0 and f’(0) = 0.

0 ;=0

If f(x) is derivable at x = a, then,
Prove that : lim M = f(a) — af "(a).

x—a X—a

Show that f(x) = |x— 2] is continuous but not derivable at x = 2.
Find the values of @ and b so that the function :

2 +8x+a ;<1

is differentiable at each x € R.
bx+2 ;x>1

Answers

1
Not derivable 2. p= 5 8. a=3and b=5.



SUCCESSIVE DIFFERENTIATION

STRUCTURE

Introduction

Derivatives of nth Order of Some Standard Functions of x
Use of Partial Fractions
Leibnitz’'s Theorem

Determination of the Value of the nth Derivative of a Function for x =0

LEARNING OBJECTIVES

After going through this unit you will be able to:
e Derivatives of nth Order of Some Standard Functions of x

e Use of Partial Fractions

Leibnitz's Theorem

Determination of the Value of the nth Derivative of a Function for x =0

INTRODUCTION

If y be a function of x, its derivative dy is itself a function of x. In general, we

X
assume that it also possesses a derivative if 1t 1s differentiated further. The derivative

Z—y is called the first differential co-efficient or first derivative of y w.r.t. x. The
X

differential co-efficient of ﬂ, i.e., i(ﬂJ is called second differential co-efficient or
dx dx \ dx

2
second derivative of y w.r.t. x, which we denote as d_g [read as dee two y over dee

X
x squared]. In like manner the third differential co-efficient or third derivative of y

2 2
w.r.t. x means the differential co-efficient of d_y} le., i M and is represented
dx? dx | dx?

3
by d_%’ and so on. In general, the nth differential co-efficient of y w.r.t. x is denoted by
dx

n
d_i" This process of finding the differential co-efficient of a function is
dx
called Successive Differentiation.

Self-Instructional Material
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Thus, if y = f(x), the successive differential co-efficients of f(x) are

dy d’y d’y
dx’ dx2, dx?

These are also denoted by :
()2 T s Y
@11) Dy, D%y, D3y, ........ Dy.

@)y, y, Yy, . ,
@) fx), ['®), [7X), ......... L ().

Note 1. The following formulae on trigonometry will be helpful in learning this chapter.

1. 2 sin A cos B=sin (A + B) + sin (A - B)
3. 2 cos A cos B=cos (A+ B) + cos (A-DB)

_ 1-cos 20
2
7.sin 30 =3 sin 0 — 4 sin® O

5. sinZ 0

2.2cos Asin B=sin (A+B)—-sin (A-B)
4. 2 sin A sin B=cos (A—-B) —cos (A + B)

6. cos2 0 = #

8. cos 30 =4 cos®0 — 3 cos 0.

Note. 2. The following formulae on differentiation will be helpful in learning this chapter

and subsequent chapters.

1. — (¢) where cis a constant.
dx

1

N

d , av -
-(a)a(x)—nx

d
X

n—1

®) ax ") where u is a function of x = nu %

d du . . .
3. — (cu)=c e where ¢ is a constant and u is a function x.
x

dx
4. — (W) =u @ +v @ where u and v are functions of x.
dx dx dx
Ldu_ v
5. 4 _ (1) __dx _dx
dx v v2
6 i(sinoc)=c0soc b isinu=cosu@
" @ T ® Ze dx
7. (a)dix(cos x)=—sinx (b)dix(cos u)=—sinu%
8. (@) a (tan x) = sec? x (b) a tan u = sec® u du
dx dx dx
9. (a) 4 (cot x) = — cosec? x (b) 4 (cot u) = — cosec? u du
dx dx dx
10. (a) 4 (sec x) = sec x tan x (b) 4 (secu)=secu tanu du
dx dx dx
11. (a) a (cosec x) = — cosec x cot x (b) a (cosec u) = — cosec u cot u du
dx dx dx
d . -1 1 d P | 1 du
12. (a) — = —_— b) — = _—
(@) e (sin™ x) — (b) T (sin™ u) m dx
d 1 -1 d 1 -1 du
13. (@) — (cos™ x) = (b) —cos™ U= ——=—
d 1 1 d _ 1 du
14. —(tan™" x) = b) = tanly= o%
@ dx * 1+ %2 ()dx an o 1+u? dx
d -1 -1 d -1 -1 du
15. — cot = b) — cot =
@ dx " 1+ %2 ()dxco YT 2 dx
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and

d 4 1
16. (a) —SeC X =——
dx ayfaZ -1

17. (o) i cosec L x = —— ! d 1

1. _
dx x\/xz -1 dx urlu? -

d +_ o« A gl
18.() " =e (b) e =€ —
d d . du
(@) o a*=a"loga ) I a*=a"loga I
d 1 d 1 du
(@) & -= 2 jogu==2
20. (@) I log x . b) T ogu ”

d 1 d 1
21. (o) aloga x =;loga e (b) aloga u =;loga e

e —e* e*+e*
2

(¢) cosh? x —sinh?x=1

22. (a) sinh x = (b) cosh x =

23. i sinh x = cosh x

24. i cosh x = sinh x.
dx

SOLVED EXAMPLES

. d’
Example 1. Find d—g, wheny = 4x° + 4x + 2.
X

Solution. Here y=4x+4x+ 2
2 d
Ay _ 9244 d_g:—(12x2+4)=24x
dx dx dx
3 d
% = - (24 =24
X
x . dly
Example 2. Ify= , find )
\/1—x2 dx’
Solution. y = ad =
1-x
dy N1-% .1—x.%(1—x2)_1/2><(—2x)
dx (1-22)
2
1-x%+ 2~
_ 1- 2 _1—3c2+3c2
- 1_x2 - (1_x2)3/2
2 3
% - _ E (1 _ x2)7 5/12 % (_ zx) — 3x(1 _ x2)7 5/2
X

de®
= 1522 (1 —x2)" "2+ 3 (1 —x2) 52

— (1 _ x2)— 3/2

3
d y _ [x(_g)(l_xZ)—7/2 X(— zx)+(1_x2)—5/2:|

Successive Differentiation

NOTES
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Calculus—I 15x2 3 15x2% + 3(1- x?)

= 1-x2)72 + (1- x2)72 = (1-x2)72
_3+12¢*  3(1+4x?)
NOTES T 1-x2)72 T 1-xH)72

Example 3. Ify = a cos (log x) + b sin (log x) , prove that x%y, + xy, + y = 0.
Solution. y = a cos (log x) + b sin (log x) (D)
Differentiating w.r.t. x,

ylz—asin(logx)‘l+bcos(logx).l
x x

Multiplying every term by L.C.M. = x,
xy,; = —asin (log x) + b cos (log x)
Again differentiating both sides w.r.t. x

i (xy,) = —a cos (logx)‘l—b sin (log x) .
dx X

R |~

or X .y, vy . l=-— [a cos (log x) + b sin (log x)]

x
Cross-multiplying x%y, + xy, = —y [By (D]
or xZy, +xy, +y=0.
Example 4. If p®=a? cos? 0 + b? sin? 0, prove that
2 2,2
iy
do D

Solution. p?=a?cos? 0+ b2sin? 0

Differentiating w.r.t. 6, we have
21)‘% =a?.2cos 0 (—sin 0) + b?. 2 sin 0 cos O
= (b% — a?) sin 20 (D

Differentiating again, we have

2
2p . d p+2@‘@=(b2—a2)x200826
do’ do de

dzp_ 9 9 dpz
p.W—(b —a?) cos 20 — »

b2 -a®)?%sin%20

= (b? — a?) cos 20 — 5 [From (1)]
4p
Adding p? to both sides, we have
d’p 9 b* - a*)*sin” 20
p—= +p?=(b?—a?) cos 26 — +p?
do? 4p®
d’p 4% -a”®)cos 20. p* — (b® —a®)* sin® 20 + 4p*
or Pl 2o +p|= 1’
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Putting the value of p? in R.H.S.

Successive Differentiation
4(b® - a®) (cos® 0 — sin® 0) (a” cos® 0 +b? sin? ) — 4(b* - a”)?

_ sin? 0cos? 0 + 4(a” cos? 0 + b? sin” 0)?

4p? NOTES

2
or P (deé) * pJ = a?b? cos* 0 + 2a%b? sin? 0 cos? O + a?b? sin* O

= a?b? (cos? 0 + sin? 0)? = a?b?.
d2p N _ aZbZ

p= )
do? p’
Example 5. [fx=a (cos 0+ 0sin 0), y=a (sin 6 — 0 cos 0), prove that
2
ad d—;} = sec® 0.
dx
Sol. We have, =a(—sin 0+ 0 cos 6+ sin 0) = ab cos O (D)

and

ST

=a(cos 0+ 0sin 6—cos 0) =ab sin O

dy dy do _ ab sin O _
dr  dodx  abcose and

Again, differentiating both sides w.r.t. x,

dzy 2 do 1
— =sec’® — =sec? . ——. By (1
dx? dx ab cos O By (1)
 sec® @
ab
d2
Hence ae—g =sec® 0.
dx
EXERCISE A
6
1. () If y=«3log x, prove that y, = —.
X
@) If f(x) = tan x, find % (x), when x = %
2y 21
@) If y = log x , prove thatd—‘g = og—;c3.
dx x

@v) If f(x) = x® sin x, find [ (x).
. d2y
2. Ify=A sin nx + B cos nx, prove thatg + n2y=0.

. d? y dy
3. Ify= : how that (1 — =2.
@) If y = (sin~ ! x)%, show that (1 —x )dx2 dx
[Hint. Differentiate w.r.t. x ; cross-multiply and square, again differentiate.]
dy
If y = tan™ ! x, show that 1+2—+2 — =0.
@) If y =tan™ 'x, show that (1 + x?) 22 o

@@1) If y = (tan™ ! 1)2, prove that (% + 1)? y, + 2x(x* + 1) y, = 2.
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Calculus—I 2

4. (@) Ify=ae™ + be™ prove that d’y

__m2y:()
dxz

2
(@) If y = e sin bx, prove that % - 2a% + (@ +b%) y=0.
x
NOTES 5. (i) If y =cos ! x, show that y, (1 —x?) —xy, = 0.

N d%x dx
1) If x=(a+ bt) e ™, that — + 2n — + n?x=0.
(W) ( ) prove tha 12 a0

x d?y 1 (aly}2
111) If y = @ cosh — | prove that ==, 1+|==| .
(u) Ify 2 P g I

6. Ify= emsmilx , show that (1 — 42) y, — xy, = m?y.
7 (@Ify=Afx+ 41+ %2 |", prove that (x2 + Dy, + xy, —n?y =0.
(®) If y = A (x + 4/a% = 1)", prove that (x> = 1) y, + xy, - n?y =0,

2
8. Ify=[log (x+ {1+ x2)]?, show that (1 + &2 d_%/ + xﬂ =2.
dx dx
. -1
sin” "~ x
9. Ify=—————, show that
1/1—x2
O A-aHy —xy=1 @) 1 —x?)y,—3xy, -y =0.
2
10. (a) If y = sin (sin x), prove that d—‘;/ + tan xﬂ + ycos2x=0.
dx dx
dzy
() If y = x + cot x, show that sin? x? —2y+2x=0.
Jiea? -1 5x
o) Ify=tan !| X————| +tan" ! , show that y, = — ———.
© Ity [ . (1—x2J V2T T 1 x22
2

d cos
(d) If y = tan x + sec x, prove that a7 o

dx? B (1-sin x)2°

ax +2 , show that 2y,y, = 3y22.

11. @) Ify=
cx +

(1) If y =log (1 + cos x), prove that y,y, + y, =0.
[Hint for (1) and (i7). Differentiate three times and put the values in L.H.S. and R.H.S.]

() If y = a e* + b e* + ¢ €*, prove that y, — 6y, + 11y, —6y = 0.
2
12. Ifx=ait? y=_2at, find %

2
13. () Ifx=acost,y=>sint, find %
d*y n
@) If x=a (6 + sin 0), y = a(l + cos 0), find 22 at 6 = 3

2
14. Ifx=2cost—cos2tandy=2sin t —sin 21, find the value of %,whentZg.

2
15. (a) If x=sin {, y = sin pi, prove that (1 — x?) % —x & + p2y =0.

dx

1 d%y _dy
b) If =log t and y = — (1 > 0), prove that —= + =~ =0.
®) g y=7(>0,p 22 e
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16.

17.

18.

19.

20.

12.

14.

4.

10.

2 2 2 b4
Ifx—2+y—2:1,provethat %}:_ 53
a b dx a’y
2
If x2 + y12 = g12_ find the value of ng for x=a.
d%  h®-ab

If ax? + 2hxy + by? = 1, show that w = W

d?y 2a3xy
If y3 + x* — 3 axy = 0, show that — =— —5——.
d?>  (y?-ax)?
4
If y =e *cos x, show that % +4y=0.
Answers
(@i1) 80 (i) &% sin x — 12x2 cos x — 36x sin x + 24 cos x
-1 15, @) =2 . iy =1
. . (1) —5 cosec’ ) —
2at3 a® a
__3 17. i
2 2a
Hints and Solutions
(1) y =e* gin bx ..(D)
Q =b e™ cos bx + a e* sin bx
dx
dy
or —— =b e cos bx + ay ..(2) by (D]
dx
2
d_%/ =—b%e™ sin bx+ a b e™ cos bx + a&
dx dx
=—b? +a{ﬂ—ay:'+a& [by (1) and by (2)]
h Y dx dx’ Y ¥
sin~ !
y =
1- «2
wll—xz ism x—sin” tax— {1-x2
y, = dx
! (1-x%
1- 2 ! —sin"lx. S (1-2%)" V2 (- 20)
1-x
or =
Y1 1- 22

sin” " x
i} T Ny =1 4y e =1 &+
Cross-multiplying, (1-x%)y, =1+x ,—1 — 1+xy

(a) y =sin (sin X) .1
% = cos (sin X) . cos X -(2)
X
d2y . . L
W =—cos (sin X) sin X — cos x. sin (sin X) . cos X
dy
_  _dx : 2
= .sln x—cos?x .y [by (2) and by (1)]
coSs x
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Calculus—I () Put x=tan 6

dy 5 1 sin x 1+sin x 1
(d) —— =sec’x+secxtanx= 75— = —— = —.
cos“x cos“x 1-sin“x l-sinx
dy
NOTES 14 dy _ gt _ 2cost—2cos2t
) dx dx -2sint+2sin 2¢
dt
9 & t+2t . 2t-t
_cost—cos2t 45 sy | C-D
sin 2t —sint = o 2t+tsin?
Formulae
.3t .t
2 sin — sin — 3t
- gt % = tan =
2 cos — sin — 2
2 2
2
dy_d (tanﬁJ C 23t d (ﬁ}
dx dx 2 2 dx \ 2
, 3 3dt _3 , 3t 1
=sec? — . —— = — sec? — - - .
2 2dx 2 2 —2sin¢+2sin 2¢
dy
15. ﬂzizpcospt ﬂ:pwll—siant :pwll—y2
dx dx cos ¢ dx \/l—sinZt \/1—952
dt
Squaring both sides and cross-multiplying,
o [ Dy ’ — 2 2
1-x?)|==| =p*1A-»).
dx
Again differentiate w.r.t. x.
2 2
x Yy
16. L (1)
a? b2
d (22} dfy*)_d
de \a® ) e\ 6% ) Tdx P
1 d d 2x 2y dy
or —— @+ -5 »H=0 or — +—5—=0
2 B a7 a®  b? dx
2y dy 2x dy 2x b2 b2x @
— = or — = X — == —5
b? dx a? dx a® 2y a’y
Again differentiating both sides w.r.t. x,
Y
d-x—=
dy _ ¥ d (x)_ ﬁ[y i
a2 o2 dx \y 22 52
b | b%?
- 5|y +
a? a’y
= [by )]
Y
2
N k] e
B bZ(a2y2 +b2x2) B 2 b2
aty’ aty’
X
== x 1. [by (D]
a2y3
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DERIVATIVES OF THE nTH ORDER OF SOME STANDARD
FUNCTIONS OF x

I. To find the nth differential of x™.
Let y=x"
then y, = mxm 1
Yy =m (m — xm=2
Yo =m@m—1) (m—2)xm-3

y,=[mm-1)m-2). ... upto n factors] x x™—"
=mm-1) (m-2) ... m—-n+1).x2" " wheren<m.
[Cor. If m be a positive integer, and if n =m
then y,=mm-1)(m-2) ... m-m+1)xn-—m
=mim-1) (m-2) ... 3.21.=m!
i.e., ™ ™) =m!

and  (m + Dth, (m + 2)th derivative ........ ete., each will be = 0.

y,, =m ! which is constant and ¥ which is the derivative of y will be

. m+1)
zero and so on.]

II. The nth differential co-efficient of (ax + b)™, where n <m.
Let y = (ax + b)™
then y;=mx+bm-1. a
yy=m@m—1) (ax+ b)" 2. a?
Yo=m@m—1) (m—2) (ax+b)"=3.a>

y,=m@m—1)(m—2)(m-3) ... m-n+1)x@x+b" " a*
[Coxr. If n=m,then
y,=m@m—1)(m-2) ... 3.2.1. (ax+ b am=m! am

et
ax+b a

III. The nth differential co-efficient of

Let y =(ax+b)!

T ax+b
then yy=C1(ax+b)y?. a
Yo =1 (=2 (ax+b)y®. a*==1?. 2! (ax+b)?. a?
Yo=(1) (=2)(-3) (ax+b)*.a*
=-01D%.3!(ax+b)y*. a°

y,=CD".n!(@x+b)-"*D qn
_(=1"n!a"

or Ya _—
(aX + b)n+l
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Calculus-I IV. The nth differential co-efficient of log (ax + b)
Let y =log (ax + b)

1
then ¥, = a=(@x+b 1. a

NOTES ax +b
Yo=(1) (ax+b)y?.a?

Vo= (1D (=2 (ax+b)y?.a®==1D?2! (ax+b)3.a®

y, =D tm—-1)!(ax+b)y".a"
_ED* i m-nla®
" (ax + b)"

_1yn-1 Y
Cor'Ifa:1;b:0:y:10gx,thenyn:( 1) (n 1)

or

xn

V. The nth differential co-efficient of a™*
Let y=am™
: y, =m . a™ (log a)
¥, =m? . a™ (log a)*
¥, =m? . a™ (log a)®
o y, =m".a™ (log a)*
[Cor. Put a =e, then y =e™ and y, = m" e™~.]
VI. The nth differential co-efficient of sin (ax + b)
Let y=sin (ax + b)
then y, = a cos (ax + b)

. T
=@ sin (ax+b+—)
2

‘ o sin (g + 9) =cos 0 [Note this step]

g

1
QL
Do
o
@]
wn
Q
]
+
(o))
+
ola
I
L
Do
wn
®,
=
~—
Q
bR
+
[op)
+
|3
+

Yo

y, = a" sin (ax+b+n.—).

[Cor. Ifb=0,y=sinax,y, =a" sin (ax + ngﬂ
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VII. The nth differential co-efficient of cos (ax + b)
Let y =cos (ax + b)

then y, =—sin (ax +b) . a=a cos (ax +b+ g) [Note this step]

[+ eoge0)=n

y,=—a®sin (ax+b+£) =a? cos (ax+b+£+£)
2 2 2

= a? cos (ax+b+2.g)

¥, =—a®sin (ax+b+2.£) =a® cos (ax+b+2.£+£)
2 2 2

= a® cos (ax+b+3.g)

i
y, = a" cos (ax+b+n§).

[Cor. If Yy = COS ax

T
y, = a’ cos (ax +n EH

VIII. The nth differential co-efficient of e?* sin (bx + ¢)
Let y=e®gin (bx + ¢)
d . . d .
then y, = e®— [sin (bx + ¢)] + sin (bx + ¢) — [e™]
dx dx
=e™ cos(bx+c).b+sin(bx+c).a.e™
= e [a sin (bx + ¢) + b cos (bx + ¢)].

We determine two constants r and 6, to change the expression into a single sine
which will enable us to make the required generalisation by putting,

a=rcos0,b=rsin0

b
r=,la2+62,6=tan*1;‘

Hence y; =e* [rcos 0. sin (bx + ¢) + rsin 0. cos (bx + ¢)]
=re®gsin (bx + ¢+ 0).
Thus y, is obtained from y on multiplying it by the constant r and increasing the
angle by the constant 8. Repeating the same rule to y,, we have

¥, = r?e® sin (bx + ¢ + 26).
Similarly, ¥, =13 e sin (bx + ¢ + 36).

n

Hence, in general, y, = [e®* sin (bx + ¢)] = 1" . e®™ sin (bx + ¢ + nb)

xn
Putting values of r and 6,

y, = (a2 + b%)"2 e2x , sin (bx +e+n.tan"?! B)
a
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Calculus-I IX. The nth differential co-efficient of e?* cos (bx + c)

Let y =e* cos (bx + ¢)
then y, = ae* cos (bx +c¢) —be™ sin (bx + ¢)
=e® [ a cos (bx +¢) — b sin (bx +¢)]
NOTES Asin Art. VIII, put a =r cos 0, and b =r sin 0.
r=.a?+b2,tan 0= é, i.e, O=tan! b

a a
y, =e™r[cos 0. cos (bx + ¢) —sin 0 sin (bx + ¢)]
=r e™ [cos (bx + ¢ +0)].
Thus y, is obtained from y on multiplying it by the constant r and increasing the
angle by the constant 6.
Repeating the same rule to y,, we have
¥, = 1% e® cos (bx +c¢ + 26).
Similarly, ¥y =1 e® cos (bx + ¢ + 36).

n

Hence, in general, y = [ e cos (bx +¢)] =r" e™ . cos (bx + ¢ +no)

xn
Putting values of r and 6,

b
y, = (@2 + b?)"2 e2x | cos (bx +c+n.tan™! —).
a

SOLVED EXAMPLES

Example 6. Find the nth differential co-efficient of log (ax + x2).
Solution. Let y =log (ax + x?) =log x(a + x)

=log x + log (x + a)
Differentiating n times,

Y, = nn log x + nn log (x + a)
x x
n-1 n _1n\yn-1 _ | 1n
_ D (n-D!'.1 +( 1 (n nl)..l By Art. IV]
x" (x+a)
:(_l)n—l(”/_l)1 i_{_;
xt (x+a)" |

Example 7. If y = cos® x, find y ..
Solution. We know that
cos 3x =4 cos® x — 3 cos x

cos® x = % [cos Bx + 3 cos x]

re., y=l [cos Bx + 3 cos x]

Differentiating n times,

n n

1
— | ——cos3x+3
4 | dx" dx"

¥, = cos x
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_ % [3" cos (3x + ”—2“) +3.1" cos (x + ”—Z’TH [By Art. VII]

1
=—1|3" cos(3x+n—nJ+3cos(x+n—nJ )
4 2 2

Example 8. Ify = sin x sin 3x, find y,.
Solution. y =sin x sin 3x

1 1
=3 [2 sin 3x sin x] = 2 [cos 2x — cos 4x]
[~ 2sin Asin B=cos (A—-B)—cos (A+ B)]

1] d" d"
y =—= cos 2x — ——cos 4x
T2 dx" dx”

1
== 2" cos 2x+n_n —4" cos 4x+n_n )
2 2 2

Example 9. Find the nth differential co-efficient of e* sin’ x.

Solution. We know that,
sin 3x = 3 sin x — 4 sin® x

sin® x = 2[3 sin x — sin 3x] (D
Let y=e*sin’®x=e". 1[3 sin x — sin 3] | From (1)
3

X o 1 X o
se'sinx— . e'sin 3x
y, =212+ 12)"2 e*sin (v +ntan ' 3)
1 nl2 ,x o3 -1 3
— 4. (12 + 39" e sin [Bx + n tan~ ! 3]
| Comparing to result in Art. (VIII)
3 . Tl 1 .
= 212 o gin | X tny -1 1072 . e*sin (3x+n tan~! 3).

Example 10. Ify=x+a,findy,.

Solution. Here, y=(x+a)'?

y=g@+ayt?

Y= (3) 3) (v +a)y ¥

BEdehEhera B T ara O
1.3.5...upto(n — 1) terms (2n-1
y,= 1 e wra 2]
13...2n -3 _ 2n -1
=<—1>"*1% wra 5

Remark. If none of the formulae of the IX Articles is applicable to find y, in a problem,
then we proceed as in the articles, i.e., find y,, y,, y, and then generalise as done in the above
example 6.
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Calculus—I

EXERCISE B

Find the nth dertvative of the following :

1. 4*
NOTES g
1
2. ) ———=
® 3-2x)°
2x+1
3. () log 2
4. (1) sinZx
[Hint. (iv)
(v) sin*x.
5. (7) sin x cos 2x
6. (i) cos ax sin bx
7. (1) e*cosx
(111) e* sin x cos x
8. (1) e™ cos? x sin x

(Iv) a® cos x.
9.

Hint. i,

1. (0) 4% [log 4]"

(i) [3_2x]n+3

82  Self-Instructional Material

(i17) 2M[e** + (— )" e =]

(n+2)!.20°1

(i) 5* @i11) e** + e 2 @v) log 3x.

@) m.

(i) log | == ii ii) log (2 — a?) (iv) 3;:27 .

@i1) cos? x (111) sin? x (tv) cos? x.
cos? x = (cos? )2 = (1 + c;)s 2x )2 _ % . cos22x cosz 2x

=l+l cos2x+l (1+cos4x)=§ +l cos2x+l cos 4x.]
4 2 8 8 2 8
(i1) cos x cos 2x.
(i1) sin x sin 2x (111) sin® x cos? x.
(1) e*sin x
(tv) e sin2 2x.
(11) e* cos® x (111) e* sin? x sin 2x

[Hint. a*= l%8 %" = grloz a]

If u = sin nx + cos nx, prove that p_=n" [1 + (= 1)” sin 2nx]"? where u_denotes the rth
differential co-efficient of w w.r.t. x.

o rm - rn
n’ sin nx+§ +n" cos| nx +—

2)
o rn rn
n’|sin| nx +— |+ cos| nx + —
2
. rn rn
n" .|| sinf nx + — |+ cos | nx + —
(s - 2] o 2]
. 2 rmn 2 rm . rm rm
n’ Lfsin“| nx + — |+ cos“ | nx + — |+ 2sin | nx + — | cos | nx + —
s e oo+ 2 e e+ )
n’\/1+sin2(nx+%)

ny1+sin (P +2nx) =p" 41+ (- D sin 2nx:|.

|~ 2sin 6 cos 6 = sin 26

Answers
@) [log 5]" . 5*
-1
Gv) L1 (-D! v n(n - ! )
X
(i) [-1*"(n+D!.b" .

[bx + a]* 2



n-1 n
5. (U (n—l)![ 2" 1 }
2 [2x+ 1" (x-2)
L1 Rl N 21" 4"
Wy CU =D ‘[[3-2;@” [5+4x]”:|
1 .. =D"n!
—1)yn-1 _ | —
@) =1 (n-1)! |:(.?C +a)l + (x — a)n] @) (x + 2)n+1 ’

4. (1)—2" lcos [2x+ n.7/2] @) 2" ! cos [2x + n . m/2]

. 1 .
(©22)) % sin [x+n . w/2] — e 3" sin [3x+ n . /2]
(iv) 2"~ lcos [2x + n . m/2] + 227~ 3 cos [4x + n . T/2]

(L) —2" lcos [2x+ n . /2] + 22" 3cos [4x+ n . 1/2].

1 . ) Y n n
5. (l)E [3" sin Bx+n . m/2) —sin (x + n . 1/2)] (”)E 3" cos 3x+n§ + cos x+n§ :

6. () %[(a +b)" sin {(a +b)x +%"} +(b - a)" sin {(b —a)x +”—2"}]

1
(ii) 5 [cos (c+n. m/2) = 3" cos (Bx+ n . W/2)]
1
(i) 7o [2 sin (x + n?n) - 5" sin (5x + n—;) + 3" sin (3x + n—;)] ‘

7. (1) 272 . e¥cos [x+ n . m/4] @i1) 2"2 . e*sin [x+ n . /4]

(iif) % .52 e* sin (2x + n tan~ 1 2) (iv) %{3%3’“ - 5"e3* cos (4x +ntan” 1%)}

1
8. 7 [(@2+ 1)"2 e*™ sin (x + n tan~ ! 1/a) + (@* + 9)"2 e® sin (3x + n tan~ ! 3/a)]
3 12 1 12 -1
() 7 2n= e cos [x+ n . /4] + 7 10™= e* cos [3x + n tan™ ! 3]
oo 1 12 : -1 1 12 : -1
() 7 M= e*sin [2x+ n tan ! 2] — Z [17]"= . e* sin [4x + n tan™ ! 4]

@) @ [(1 + log @)?]™2 . cos [x + n tan™! 1/log a].

USE OF PARTIAL FRACTIONS

In order to determine the nth derivative, of any rational function, we have to
split it into partial fractions.

Forming partial fractions is converse process of taking L..C. M.

To resolve a fraction into partial fractions, the degree of numerator must
be less than the degree of denominator.

Partial fractions for :

) f(x) A B C

© x-a)x-b)(x-c) arex—a+x—b+x—c

. f(x) A B C
S — e e w-a)?  x-b
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Calculus—I o f(x) A B C D
(i) ——— are + 5 + 7 +
(x - a)(x - b) x-a (x-a) (x-a) x-b
£(x) __A B Cx+D
(x-a)x—-b)px® +qx+r) *-a x-b px’+qu+r
To find A, B, C, D, ete., we put each linear factor of L.C.M. equal to zero. The
remaining constants are obtained by comparing coefficients of like powers of x on both
sides.

@iv)
NOTES

SOLVED EXAMPLES
. L 1
Example 11. Find nth derivative of —— .
x° -a
1 1 A B
Solution. Let = = = + .1
OTHon. -e YT od? (x-a)x+a) x-a x+a W

Multiplying both sides by L.C.M. = (x —a) (x + a),
1=A@+a)+B@-a).

Put x—a=0, e, x=a,
1=A@+a)+B@—-a) or 1=2aA .. A:%‘
Put x+a=0, i.e., xX=-a.
1=A(a+a)+B(a—-a), or 1=—2aB .. B:;—;‘

Putting values of A and B in (1),

2 _ 2 - 1| L 1
x—a x+ta

—
—

y:

l\'J|H a

-a
d" v 1

dx”x a dx x+a
_ 1

2a

-D"n!1" (D"l 1”}

)n+1 )n+1

(x—a x+a

n g
( By Article III, d 1 _(D'nla J

dx" ax+b (ax+b)" !
1 1 1
=— (1"n! - ‘
%0 -=D"n |:(x_a)n+1 (x+a)n+l:|
3

Example 3. Prove that the value of the nth differential co-efficient of — 7 for x
X2 -

=01s zero, if n is even ; and is — (n /) if n is odd and greater than 1.

3 3
Solution. Let y= 2x = * —1) & |
x“ -1 (x—l)(x+1) xglx
x
_ x3 . A N B "
. Y DDV x-1 x+l
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Multiplying by LC.M. = (x - 1) (x + 1)
P=xx-DE+D+Ax+D+B@xE-1

Putx=1, 1=AQ or A=

Putx=-1, —-1=B(+2) or B=

DO | = DO

Putting values of A and B in (1), we get

IR SN S
Y= 2 x+1 x-1]

If n > 1, the second and higher derivatives of x are 0.
1| -D"n! -D"n!
Forn > 1, y == ( l)n1+ ( l)n1
21 (x+D""" (x-D"F
1 1 1
=—(=D"n! + !
2( ) 7 |:(x+1)n+l (x_l)n+l] ()
Case I. When n is even, putting x = 0 in (1),

Gdn![1 1] n!
= —+ =—[1-1]=0.
o 2 |1 1] 2 [t=1i
Case II. When n 1s odd,
bn!f1 1] (n!)
= —_— = — = — ’
(yn)O 9 _1 + (+ 1)_ 9 [1 + 1] n.:.
EXERCISE C
Find the nth dertvative of the following :
1 ..
L OG- A axsoa?
2 5x + 12 x+1

2. X . .

D i oe R ) 6 —7x_3

x+1 (-1*n! 3 1
3. IfyZm,xii 2, prove that y, = 1 |:(x—2)n+1+(x+2)n+l].
4. Find the nth derivative of :
1 .. x>
D F B 6D T TS
Answers
S =1" . n! 11 L 1 2"

L (L) 3 |:(x_1)n+1 (x+2)n+1:| (”) (_ 1) n!|:(x+1)n+1 (2x+1)n+1:|
-1t 9.28 8 o 2 .3
0Ty [(2x+3)"+1 (x+2)”+1:| = n[(x+2)”“ (x+3/ 71

Gy LWt 2n5 8.2
11 | @x-3""1 @x+D"F1)
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Calculus—I - - 1"n!] 1 1 1 1 1 1
. l - - - -
a®-b% |2 |(x-a"' @+t 2 |(x-b""1 (x+b)t]

,{(n+2)(n+1) 3(n +1) 1 1 ]

I ~
NOTES @ A 8 T a0 T8 Baa ]

LEIBNITZ’S THEOREM

This theorem helps us to find the nth differential co-efficient of the product of
two functions in terms of the successive derivatives of the functions.
Statement. If u, v be two functions of x, having derivatives of the nth
order, then
dn

n

v)=uv+2Cu, _,v,+*C,u, _,v,+....+?C u v +..4+°C uv,

dx

where suffixes of u and v denote differentiations w.r.t. x.
Proof. We shall prove the theorem by Mathematical Induction.

Step I. Let y =uv
By actual differentiation, we have
Y, = Ut uv,
and Vg = UV T 1wy + v+ uv,
= u,U + 2u,v, + uv, = u,t + 2Cu, v, + 2Cyun,,.
Thus, the theorem is true for n =1, 2.
Step II. Let us assume that the theorem is true for a particular value of n, say
m, so that, we have
y,=u, v+"Cu, v, +"Cou, U+ ...
+mC, qu, .U, +"™Cu, v .+ +mC, uv, .
Step III. Differentiating both sides, we have
Yypo1=U, . 0tu, v,+"Ciu, v,+"Ciu, v,
+7mCyu, U, +"Cou, U+ .
+7mC, qu, ..U, +"C ju, U,
+"Cou, 0. +"Cu, vt

m s m
+mC u, v, + "C_uv,

=u, vt ("C;+Duv, v+ ("Cy+"CPu, Uyt .

+ (mCr+ mCr— 1) U/m—r+1l +

But, we know that
mC,«71 + mCr: m+1 Cr
Puttingr=1,2,3, ..........
mCy+mC,=m*1C, or 1+mC,=m*1C,
mCyp+ MCy="T1C,

and mC, =1=m*1C .
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which is of exactly the same form as the theorem to be proved with n=m + 1.
.. If the theorem is true for n = m, then it is also true for the next higher value
n=m+ 1.
But in Step I, we have proved that the theorem is true for n = 1 and n = 2.
it must be true for next higher value n =2+ 1= 3.
Again - the theorem is true for n = 3.
it must be true for next higher value n =3 + 1, 1.e., 4 and so on.
Hence the theorem is true for any positive integer n.

SOLVED EXAMPLES
Example 13. Find the nth derivative of x® sin x.
Solution. Let u=sinx and U =2a?
u, = sin(x + nﬁ) v, =2x
2
) i
u, ;= sm|:x +((n- 1)5} v, =2
) Vi
u, o= sm[x+(n—2)§:| v, =0

Now by Leibnitz's Theorem, we have

n

J— n n
- @y)y=u,v+"Ciu, ;v,+"Cyu, ,u,

n

or (x? sin x) = sin (x + nﬁ)‘ x?+nC, sin[x +(n- 1)2} 2x +"C, sin[x +(n - 2)2} 2
x" 2 2 2
= x? sin (x + %RJ + 2nx sin[x +(n - 1)%} +nn-1) sin[x +(n- Z)g}
Note. Generally, we take x" as v.
Example 4. If y = sin (m sin~ ! x), then prove that
(1-x%)y,—xy,+m?% =0
and (1-x%)y, . ,=(En+Dxy ., +m?-m?)y,.
Sol. y=sin (m sin~ ! x) (D
. 1 m
¥y, =cos (m sin~ ' x) . 12
Cross-multiplying /1 - x% y, = m cos (m sin™! x).
Squaring both sides,
(1 —x%y,2=m? cos? (m sin~ ! x)
= m?2[1 —sin? (m sin" ! x)] “ cos?20=1-sin%0
=m? (1-y? [By (1]
Again differentiating both sides w.r.t. x,
d d d
1—a%) —y24+y2—1-ad)=m?|0-—y2
( )dxy1 S ( ) [ e
or (1-x?) 2y, y, — 2xy,2 = — 2m?yy,
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Dividing every term by 2y,

(1 —x%)y, —xy, =—m?
(1 —x%y, —xy, + m% = 0.

Now differentiating every term n times by Leibnitz's Theorem, we have
0y, =29 +"C; (), (=20 +"C,y(yy), 4, (2)
o), x+"C, o), ;- U+m?, =0

Yosg(I=2)+7Cry, 20+ 7Coy, -2) =y, ;. x="Cy, + miy, =0
A-2%y, ,,—2nxy ,,—nm—1y —xy ., —ny +m? =0

A-a%y ,,—@n+1)xy

Hence A-2dy, ,,=@Cn+ Dy ,, +0>—mdy, .

Example 15. If y!/™ + y~ /™ = 2x, prove that

(-Dy, ., t(En+Dxy, ., +nm*-—my =0.

Solution. ylim 4 y-1lim = 9y

Put

If

yllm =z

1
z+—=2x or 22—2xz+1=0
z

<

yIm=xax? -1 or y=@ £yx? - D"
y=(x+x2-1)", then

n+1l

—@m*-m?)y, =0

L 2xE4a’ -4

2

1 1
%Zm(xv\/ﬁ)”“l o7 1'2x]

m(x+\/x2—1)m71 21

m(x +/x% - )™ __my
\/xz—l \/xz—l

And, similarly, if y = (x — \/x? - 1)™,

Then

Yy

Y= .
x2-1

In either case, squaring, we get

2 2
m
y,2= 2 —yl or (x%—1)y,%2=m??

Differentiating again,

-1 2y, +y,%.2x=m>. 2yy,

Dividing both sides by 2y,, we have

(% — 1)y, + xy, —m?y =0



Differentiating n times by Leibnitz's Theorem, Successive Differentiation
0y, &% =D+ "C; (), 20) +"Cy (), o 2+ ), x+"Cy (), ;. 1-m%, =0

nn-1
or yn+2(x2—1)+n/.yn+1.2x+T Y, 24y, ., xtny  1l-m%y =0
or @-Dy ,,*Cn+Dxy ., +@2-—n+n—mdy =0 NOTES
or @ =1y ,,t@n+Dxy , +®0>—m?y =0.
EXERCISE D
Apply Leibnitz’s Theorem lo find y, in the following cases :
1. (@) xPe™ @1) &% e* 1) x° e~
2. () x’cosx (1) x° sin ax
3. () x’logx @11) &% e* cos x.

4. State Leibnitz’'s Theorem and hence or otherwise show that if y = x2 e*, then

ddy __d%y _dy
— = 28? — 48 dx

78 + 21y.

n!
n+1:

5. Ify=ua"log x, prove that y

. 1 - C
|:H1nt. We have y; =x" .= +nx" T og x. Multiplying by x, we get
x

yx=x"+nx"logx or yx=x"+ny.

a

n
Now, diff. both sides n times and use d - (x™)=n !:l
X
) d™y ) nn nn
6. Ify=x?sin x, prove that =x2-—n2+n)sin | x+— | —2nxcos | x +— |.
dx" 2 2
7. Differentiate n times the equation :
. d?y dy ..
@ (1—952)W—x£ +a?y=0 (@) &%y, + xy, +y =0.
8. Ify=acos (log x) + b sin (log x), show that :
Ay ,t@n+Daxy 02+ y =0.

9. Ify=sin !« prove that 1 -2y ,,—@n+ 1y ,, —n?y =0.

10. Ify=[log (x+ 4/1+ x2)]2, prove that
A+xdy, ,,+@n+1ay, ,,+n%y =0
. -1
11. (@) Ify= ™" " prove that :
@ (1 =%y, —xy, = m?y @) A=xDy,,,—Cn+1xy,  ,—O*+m?y,
=0.
. (logy
() If x =sin ,prove that 1 —x?)y _,—@n+Dxy ., —m*+a?)y =0.

-1
© Ify=em % showthat (1-x)2y,,o - (2n+ Dxy,,; - % + m?)y, = 0.

n
12. Ifcos ! (%) =log (%) ,prove that «%y ., +@n+Dxy , +2n% =0.
sin"x 5 5
13. Ify:ﬁyprove that (1-2%y ,,-@n+3)xy , —m+1?y =0.
-x
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Calculus—I 14. Ify=(@?-1)" prove that ?-1)y ,,+2xy, ,,—n®m+1y =0.

15. Ify= otan™! (or x tan (log ¥)), prove that

A+xDy ,,+[@n+Dx—1]y ., +nn+1)y =0.

n+1
NOTES Answers
1. ()e®.a" ?[a®x®+3n.a%x*+3n(n - Dax+ nn —1)(n—2)]
@11) e [x2 + 2nx + n(n — 1)] @111) 2" 3 2 [8x% + 12nx% + 6n(n — Dx + n(n — 1)(n — 2)].

n-—

2. (@) «® cos (x + %n} + 3nx2 cos (x + 1 n} +3n( —1) x cos (x + 2 ; 2 n}

+nn—-1)(n—2) cos (x + 2 ; 3 RJ.
@) a*~ 3[(13 %% sin (ax + n?n) + 3na’x? sin {ax +(n— 1)%}
+3n (n—1) ax sin {ax +(n-2). g} +nmn —1)(n —2) sin {ax +(n - 3)%}]

3.
(L) X 3

n n-1 n—2_n—3 '

[—1]”‘%![1 3 .3 1]

n+1 n-2
@) e* 2”/2x2cos(x+n7n)+2 2 nxcos(x+n—1g)+2 2 n(n—l)cos(x+n—2£).

7. O[N-ay ,—n+1llxy . —[n?-ay, =0
@) x%y ,,+[2n+1]xy . +[n2+1]y =0.
Hints and Solutions
3. (i1) Let u=e‘cosx and v=x2
u, = (a%+ bH"2 e* cos (x +ntan” 1%}

Here a=1 and b=1

a?+b2=1+41=2 and tan*12=tan*11=%
a

n
u, =2"2 e cos (x + nTJ

5. y=ux"log x (D)
Diff. w.r.t. x, Yy, =" l +nxtllogx
x

Multiplying every term by x,
yix=x"+nx"logx or y, x=x"+ny [by (1)]
Diff. both sides n times w.r.t. x,

dn
"Cy (v, -x+"C (), ;l=nl+ny ( I x")=n !J
or Vo1 X+ny, =nl+ny or y x=n!
n!
yn+1:7'
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d" n-1 dn—2 Successive Differentiation
6. y,=x% —— (sin x) + "C, . 2x T (sinx) +7C, . 2. 5 (sinw) ..(1)
dx" dx"~ dx"~
n
Now d (sin x) = 1" sin (n_n + x} =sgin (n_n + x} .. (2)
dx" 2 2 NOTES
dr- 1

Changing n to (n — 1),

. . T
T (sin x) = sin ((n—1)§+xJ

. (nm W . T nn LT
=sin|—-—+x|=sin—|——-—-—-X|=—sIln|——
(2 2 J (2 2 J [2

Changing n to (n — 2) in (2)
n-2
% (sin x) = sin

{(n—2)g+x}

Y

=sin | L _ntx|=si —(n—n—+x) = _sin| 24k
=sin | =sin 2 =—sin| 3 ‘

1
11. () x:sin(OgyJ o sin-ly= log y
a a
= logy=asin~!x = y:easin’lx‘
n
12. cos ! (ZJ =log (i)
b n
L= cos log (x)n
b n
y=b cos (n logﬁ)
n
14. y= (x2 _ l)n
Diff. both sides of (1) w.r.t. x,
(x?

y,=n@-1)""1 2xory, =2nx

Cross-multiplying (&% —1)y, =2nxy.

x? -1

(ol

. (D)
_ 1)”

[By (1]

DETERMINATION OF THE VALUE OF THE NTH

DERIVATIVE OF A FUNCTION FOR x =0

Sometimes it is required to find the nth derivative of a function for x = 0.

The working rule to find (y,) _ is being given below :
1. Put the given function equal to y.

Then (1) Take L.C.M. (if possible).
(1) Square both sides if square Roots are there.
(i) Try to get y in R.H.S. (if possible).

3. Again differentiate both sides w.r.t. x to get an equation in y,, y,, y.
4. Differentiate both sides n times w.r.t. x by Leibnitz Theorem.

Leibnitz Theorem is
) = ) n ) n )
@v),=u,.v+"C,.u, ;.v;,+"Cy.u, ,.0,+ ..

n ,
+7C, uv,,.
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5. Put x=01in equations of steps 1, 2, 3, 4.
6. Putn=1, 2, 3, 41n last equation of step 5.

7. Discuss the two cases when n is even and when n is odd.

SOLVED EXAMPLES

mcos™ x

Example 16. Ify=-e , show that

(1-x%)y, . ,—(n+Dxy . ,—m*+m?)y =0

and calculate y, (0).

-1
Solution. Here y=em® ¥

_ mecos™ ' x -m
e

o . \/ 1-x?
Squaring both sides, we have
(1—x%) y,2 = m?y?
Differentiating w.r.t. x, we have
(1 —x% 2y.y, — 2xy,? = 2m2yy,
Dividing by 2y,, we get
(1 —x%) y,—xy, = m?y
Differentiating n times by Leibnitz's Theorem, we get

A=a?)y ,o—2nxy ., —n@m—1y —xy ., —ny =m?,

-2y, ,,—@Cn+Dxy ., —®*+m?)y =0
By putting x =0, in (1), (2), (3) and (4), we get
y(0) =em ™
y,(0)=—m . em ™2
¥,(0) =m? . y(0) =m?. em ™2
Yoo (0 =@ +m?)y, (0)
Puttingn =1, 2, 3, 4 ... in (5), we have

y5(0) = (12 + m?)y, (0) = — m(12 + m2)em ™2
y,0) = (22 + m?y, (0) = m*2% + m?)em ™2

¥5(0) = (32 + m2y, (0) = — m(1% + mH(3? + m2em -2
¥5(0) = (4% + m2)y, (0) = m2(22 + mH)(42 + mHem - ™2

—m.e™ ™ (12 + m?®)B3%+m?) ... [(n-2)%+m?]

In general, y,(0) =

Example 17. If y = tan~ ! x, prove that
(1+ x2)yn T 2n,xyn +nm—-1) Y, = 0.

when n is odd.

m?.e™ ™ 22 + m?H4? + m?) ... [(n-2)?% + m?],

when n is even.

ey
)

~.(3)

(4

..(d)

Hence determine the values of all the dertvatives of y with respect to x when x = 0.



Sol. Here y=tan ' x

1
N 1+ 2
or y, I+a?)=1
Differentiating n times by Leibnitz's Theorem, we have
-1
y,o A+ad)+ny . 2x+%ynf1 .2=0
or A+x%)y ., +2nxy, +n@m—-1)y, =0

Putting x = 0 1in (1), (2) and (3), we have
y©0) =0y, (0)=1
and Y,+1 O =—n@m-1y, O
Puttingn=1,23,4 ... in (4), we get
Y, (0)==1.(0).y(0)=0
Y, 0 ==2.(1) .y, O)=—2=(=12!
v, 0)=-3.2).y,0)=0
Y- 0 ==4.03) .y, (0)=-4.(3). (-2 =(1*4!

In general,
When n is even, y,(0) =0.
n-1
When n is odd, y, =D 2 @m-1)L
EXERCISE E

1. Ify=sinlx provethat (1-29)y ,,—@n+Dxy ,, —n*y =0.
Also find the value of y, when x = 0.

sin~ !

,—x , prove that y = (n—1)%y ,forx=0.
1_ x2 n n

8. Ify=[x+41+ x2]™ find y, (0).

4. Findy, (0), when y =log (x + 41+ x?).

2. Ify=

5. () Ify=[log (x+ +/1+ x2)]2, find all the derivatives of y w.r.t. x, when x=0.

@) If y = (sinh~ ! x)?, prove that 1 +a?)y ,,+@n+ 1y, ,,+n?y =0.

n+1

Hence find y, when x=0.
[Hint. sinh~! x=log [x+ {1+ £
. -1
6. Ify=e""" % provethat (1-2dy, ,,-C@Cn+Day, ,,—0*+ad)y, =0.

Deduce that Lt 22+2 =p2+ 2 Hence find v,(0).

x=0 y,

7. Ify=sin (m sin~!x), find y (0).

~.(3)

e

(2

NOTES
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Ifyleog(x
1+x

When n is even,
When n is odd,
When n is even,

When n is odd,

When n is even,
When n is odd,

(1), (11) When n is even,
When n is odd,

When n is even,

When n is odd,

When n is even,

When n is odd,

x—-m (x +m)

x-D™ (x+D"

_1J,provethat ym=(—1)’"2(m—2)!|: - :|

Answers
y,0)=0
y,(0)=12.32.52 ... (n—2)?
¥,(0) =m? (m? - 2% (m* — 4% ...... [m? — (n—2)%]
¥,(0) = m(m?—1%)(m? - 3%) ..... [m? - (n —2)7]
y,0)=0

n-1

yO=(1 2 12.32.52 ... (n—2)

n
L}
yO=(=D2  .2.22 .42 62 . (n—2)>

5,(0) =0
7,0 =a? @2+ a)(A? + @) oo [(n—2)?+a?]
5, = a2+ a)(@ + @) ...... [(n—2)* + a?]
5,(0) =0

5,0 = mA2=mH@E =m?) ..... [(n—2)? —m?,



Partial Differentiation

PARTIAL DIFFERENTIATION NOTES

STRUCTURE

Introduction

Differention of Partial Derivatives of First Order
Rules of Partial Differentiation

Def. Symmetric Function of x and y

Partial Derivatives of Higher Order

Homogeneous Functions

d du
If u is a Homogeneous Function of x and y of Degree n, show that % and g

ox
are Homogeneous Functions of Degree (n — 1) each
Euler’'s Theorem on Homogeneous Functions

If u is a Homogeneous Functions in x and y of Degree n; then prove that

x? az—u+2xyaz—u+y2 az—uzn(n -1u.
ox2 oxdy oy>
Composite Functions
Differentiation of Composite Functions
Change of Variables
Implicit Relation of x and y
Differentiation of Implicit Equations

Theorem on Total Differentials

LEARNING OBJECTIVES

After going through this unit you will be able to:

e Differention of Partial Derivatives of First Order
e Rules of Partial Differentiation

e Def Symmetric Function of x and y

e Partial Derivatives of Higher Order

* Homogeneous Functions

qu

ou
e [fuis a Homogeneous Function of x and y of Degree n, show that a and 3

are Homogeneous Functions of Degree (n — 1) each
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Calculus—I

NOTES

INTRODUCTION

We know that crops are a function of rain, fertilizers, seeds etc.
Let us take five different fields in the same village.

Let us use different qualities of seeds in the five fields (All other factors being
same).

Now we can know the effect of the quality of seeds on the yield or crops.
In calculus, we call it as the Partial Derivative of crops w.r.t. seeds.

Note. Partial means a ‘part of .

DEFINITION OF PARTIAL DERIVATIVES OF FIRST
ORDER

We know that the differential co-efficient of f(x) w.r.t. x is

Lt flx+dx)-f (x),
o —0 ox
provided this limit exists, and is denoted by

£ or %[ﬂx)],

If u = f(x, y) be a continuous function of two independent variables x and y, then
the differential co-efficient of u w.r.t. x (regarding y as constant) is called the partial
derivative or partial differential co-efficient of u w.r.t. x and is denoted by various
symbols such as

ou of
ax, ax’fx(x’y)’ fx
Symbolically, if u = f(x, y), then
dx—0 dx
if it exists, is called the partial derivative or partial differential co-effictent of u w.r.t. x
and is denoted by

ou or f or
— or — u..
ox ox < <
Similarly, by keeping x constant and allowing y alone to vary, we can define the
partial dertvative or partial differential co-effictent of u w.r.t. y. It is denoted by any

one of the symbols
ou of

oy @Iy
5 ) fx,
Symbolically, a_; _ 8yL_t)Of(x y 6%’; flx y),

provided this limit exists.
Let (a, b) be any point.

Lt fla+ h,blz — fla,b) , 1f exists 1s called the Partial Derivative of the function

h—0

fw.r.t. x at the point (a, b) and is denoted by g_f (a,b)or f_(a, b). Similarly, the partial
X
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fla,b+h)-f(a,b)

derivative of f w.r.t. y at the point (a, b) is defined as Lt A , provided
h—0
this limit exists
. of
and is denoted by 5 (a, b) or fy (a, b).
y
For example, if u=x%+ 2xy + y?,
0
then —u=2x+ 2y and a—u=2x+ 2y.
ox dy
Similarly, if u=x>+ 3x%y +y°,
0 0
then g+ 6xy and S 3y°.
0x oy
Similarly, if u=f (x,, x,, x,, ....., x,), be a function of n variables, then the partial

differential co-efficient of u with respect to x, is ordinary differential co-efficient of u
when all variables except x; are regarded as constants, and is denoted by any one of
the symbols

ou O,
L fe
iy xy
Two very useful first order partial derivatives :

0 Y- 3(1) d _y

0 10
and —(XJ =——( = l
dy\x) xdy x

RULES OF PARTIAL DIFFERENTIATION

Rule 1. If © is a function of x, y and we are to differentiate partially w.r.t. x,
then, y is treated as constant.

Similarly, if we are to differentiate u partially. w.r.t. y, then x is treated as
constant.

If uis a function of x, ¥, z and we are to differentiate partially w.r.t. x, then y and
z are treated as constants.

Rule 2. If z=u + v, where u, v are functions of x and y, then

0z au v 0z du  dv

ox  ox ax an dy dy Iy
Rule 3. If z = uv, where u, v are functions of x and y, then

0z ov  du oz 0 v Jdu
—= =u—+v— —=—Wv)=u—+v—
ox ox ( v)=u ox v ox and dy 9y dy dy’

u .
Rule 4. If 2 =;, where u, v are functions of x and y, then

au av ou ov

e i(ﬁ) M and 9% _ i(u) M
ax ox v2 dy dy v2

Self-Instructional Material
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Calculus—I Rule 5. If z = f(u) where u is a function of x and y, then
0z dz du dz _dz du
o duas M Y du

NOTES dz

Remark. (7) If z is a function of one variable x, we get dx

0z 0z
(@) If zis a function of two variables x and y, we get e and g
(ii7) If zis a function of n variables x,, x,, ..., X, we can find
o
i’i, ......... and —Z.
0x1  Oxg 0%y,

DEF. SYMMETRIC FUNCTION OF x AND y

u is said to be a symmetric function of x and y if on interchanging x and v ;

(I.e., changing x to y and y to x) u remains unchanged.

Let us find the first order partial derivatives of the following :

2, .2
x°+
@ u=y"and @Gi) u=tan™ fi

@) u=y" ..(@0) (given)
Differentiating both sides of eqn. (i) partially w.r.t. x, (treating y as constant)

ou 0 d

_:—( x): 'X/l ‘ .. _ax: /xl [

ox axy Y I8y T odx @ log a
Again differentiating both sides of eqn. () partially w.r.t. y, (treating x as

constant)
0
a—zzxyx_1 ‘ axnznx"‘l
2, .2
x°+

@) u= tan-12—2
Differentiating both sides partially w.r.t. x,

0 1 9 [ x%+y2

_u: 2_(3(: Y J ‘ itan_lx:%

ox (x2+y2J ox\| x-—y dx 1+x

1+ 22X
xX=y
a_u_ 1 ><(3c—y).23c—(3c2+yz).1
ox 2 22 (x—y)?
1+(x +y )
x=y
x® - 2xy — y*

= (x2+y2)2+(x—y)2
a_u _ 3c2+23cy—y2
W (+yD) +(x—y)?

Similarly,
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Partial Differentiation

PARTIAL DERIVATIVES OF HIGHER ORDER

We can find partial derivatives of 3—Z and ?)_;L just as we found those of u, NOTES

Ju
because 3—“ and g are themselves functions of x and y.
X

The four derivatives thus obtained, called the second order partial
derivatives of u, or f(x, y) are

2 () 2 (1) 2 (1) 0 fon
ox\ ox ) oy \ox ) ox\ dy ) oy \ ay

0%u o%u % 9%
ox?’ dydx " dxdy 9y?

2 2

and o u
dyox 0xdy

u is successively differentiated w.r.t. x and y. But it will be seen that, in general, they
are equal.

Pu 9 (auJ Pu 9 (au)
Note. =—|=—| and =—=—|.
oxdy ox|dy Jdyox OJy\ox
The third and higher order partial derivatives are defined in the same manner.

u du u
oxdy ~0x dy

and are denoted as

few fyx’ fxy’ fyy‘

The partial derivatives are distinguished by the order in which

Caution.

SOLVED EXAMPLES
. u  %u , . . '
Example 1. Verify that = for the following functions :
O0xdy 0dyox
@) u = ax?+ 2hxy + by2, (1) u=tan™! (fJ )
y
Sol. (1) u = ax? + 2hxy + by? (D

Diff. (1) partially w.r.t. x, g—z = 2ax + 2hy

2

. . cu
Now diff. partially w.r.t. y, o 2h (2
Again diff. (1) partially w.r.t. y,
ou = 2hx + 2by
dy
Now diff. partially wor.t. x, <2 2} 3
oW . partially w.r.t. x, xay 1 ..(3)
2 2
Hence from (2) and (3), Ou = Ou )
dydx  dxdy
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@) u= tan! (ij
Yy
Diff. (1) partially w.r.t. x,

_— = X — =
ox  1+x2y?  y xZ+y?

ou 1 1 y 0 x:li
’ y ox

oy

Now differentiating partially w.r.t. y,
Pu P HyP)l-y2y  x%—y?
dyox (a2 +y?)? (x4 y?)?
Again diff. (1) partially w.r.t. vy,

ou 1 x| __ %
dy 1+ x%/y? y? x? +y2

Now differentiating partially w.r.t. x,

0%u _ _(oc2 +y%) . 1-x2x _ x% - y?
dxay (x? +y?)? (2% +y?)?
Hence from (2) and (3),
o%u _ 0%u
oyox 0Oxdy

Example 2. If z = log (x” + y*) +tan™ % , prove that

0%z 0%z
2550
ox® dy
Sol. z=log (x® +y%)+ tant 2
x
Diff. both sides of eqn. (1) partially w.r.t. x
1
i)
+
X x“+y 1+(y)
x
1 1 O-y.1
=5 520+ 2(x 2y )
X +y y x
1+
x
_ 2 x* ( y)_ 2x y
=2 2t 2. 2|l 2T 2.2 .2
X" +y x"+y X x"t+y x"+y

% _ 2x-y
ox  x%+y?
Again diff. partially w.r.t. x,
%z (®+y*)(2-0)-(2x - y)(2x +0)

o (x? + y?)?
B 2x2 +2y2 — 4x* +2xy - 2x% +23cy+2y2
(2 + y2)?2 (x2 + y2)?2

(1)

(2

(1)

(2



Now diff. both sides of eqn.(1) partially w.r.t. y,

0z 1 0. 9 9
— = — @ +yH)+
dy xZ+y%oy ey

jﬁz%(%)

2 2 x 2y +x
X 21(1): B4 =+ = Y

x2+y2 x2+y2

1
= 2y)+
x? +y? x?+y% x

Again diff. partially w.r.t. y,

x? +y?

%z (P+yD2-(2y+x)2y 2% +2y% —4y? —2xy  2x% —2xy —2)°

o> (x% + y2)? (x% + y2)2 (x? + y?)?
..(3)
Adding equations (2) and (3), we have
9%z 9%z —23c2+23cy+2y2 23c2—23cy—2y2
Se2to e T 2, .22 2, 2,2
ox® dy (x"+y%) (x"+y%)
—2x2 + 2xy + 2y% + 2x% — 2xy — 232 0
= 2, 2,2 =2 . 220
(x“+y) (x“+y%)
Example 3. If 9 = t"e~"" /%, find the value of n which will make
10 r2a_6 equal to @
rZor or ot
Sol. Here 0=¢the 4t ..(0)
(0 1s an explicit function of r and ¢)
Diff. both sides of (z) partially w.r.t. ¢,
2
9 _ g Dert /4t +t”e_r2/4t(r—zj | w. v form
ot 4t
2 r’ 2/4
=t""% nt +T e A )

Again diff. both sides of (i) partially w.r.t. r,

@ _ tn.e—r2/4t.(_2r) _ _lr.tn—l.e—rz/élt
or 4¢ 2

200 1.3 ,n-1 —r2ar
g——gr .t e
i(rz @) _ i(_lrS.tn—le—rz/éltJ
or or or\ 2

— _%tn—l 3rze—r2/4t 43 _e—r2/4t(_ ZTH

[ S
— _ltn—l 37‘2 _l i e—r2/4t
2 2 ¢

1 0 286 __l n-1 _1 ﬁ —r?/at
r—Za—r(r g)— 2t {3 3" e N (223}

Partial Differentiation

NOTES
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Calculus—I 1 9 90 90
But = —(rz —) =5 (given), therefore putting values from (i) and (1ir), we

ut .
r2 or or
have
2
NOTES o e e I
2 2t 4
Dividing both sides by ("2 e ""/4 we have
2
1 r 2 2 2
—gt(?’—z—tj = nt+rz or ——t+rz = nt+—
or _Et =nl .. n= —%
Example 4. If x =rcos 0, y =r sin 0 ; prove that
82 82 (ar) orY’
= 8y2 ox ay
Sol. - xX=rcos0,y=rsin0
[By looking at the answer we find that we need the partial derivatives of r w.r.t.
x and y.

Let us try to express r as an explicit function of x and y].
Squaring and adding x = r cos 6, y = r sin 0 ; we find that

1‘2:x2+y2 i.e‘, r= x2+y2

r is a symmetric function of x and y.
Diff. partially w.r.t. x,

or 1,2 2\-1/2 2 21-1/2 x x
— == +y) 2= +y) T = —==— .1
ox 2 [ +y2 T @
S oy
Similarly, y -
Again differentiating (1) partially w.r.t. x,
0
2r  9(x (x) xfx(r)
)
or X
r—xa— r—x.:
= =2 [By ()]
P2 _ 52 2
aZ 2
Similarly, ay_; = :—3
a9 r o%r y2 22 _ xPayt r?
LHS. = a _zzr—3+r—3 = r3 :r_3:r
RIS = 1(6_)2 a1l 5] 1fa?4y?) 1) 1
ri\ox y rir2 P2 rl P2 rir2) r
L.H.S.=RH.S
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and

i.e.,

i.e.,

r.e.,

r.e.,

or

or
or

Example 5. Find the value of the parameter n so that
V=r"(3cos? 0- 1) satisfies

J (r2 BVJJF L (sin@a—v)zﬂ

or\" or) sin0ado 00
Sol. V=r"3cos?0-1)
o _
or
oV

50 =" [6cos O (—sinBO)]=—-61r"cos Osin 6

nr Y 8cos?0-1)

oV oV
Putting these values of o and 0 in the given equation

i(rz a_V)Jr.Li(Sinea_v):o, we have
or or ) sin6 00 00

ai[rz.nr”_l(3coszﬂ—1)]+ - ea%)[—Gr”cosGsinGsinG]:O
r sin
n
9 (3 cos?0— 1] -6
or sin
J n+l 2 r'* o 3
g[nr (3 cos 6—1)]—6Sin6%(cos6—cos 0)=0

i(cose sin20)=0
0 00

[+ cos©sin?0=cos0 (1-cos?0) =cos 0 - cos® 0]

n

nn+1)r"Bcos’0-1-6 " (-sin® + 3cos20sin0) =0

sin©

n

r 6sin6(3coszﬂ—1)=0

nn+1)r*(3cos?0-1-6
Sin

Bceos?20-Dr[nn+1)-6]=0

But V)=r*(Bcos?0-1)#0 always [By (1)]
: nn+1)-6=0
n+n-6=0
m+3)(n-2)=0
n=-3, n=2
EXERCISE A
Find the first order partial derivatives of
1
(i) log (2 +y2) (ii) — (iif) cos—l(f]
x2 + y2 Y
@iv) cos™! (%J V) & +y* (vi) e* .
Find the second order partial derivatives of
(@) log (e* + &) (i) e* .
2 2
Verify that 0z = 0z where
0xdy 0dyox

(1) z = ax® + 3bx%y + 3cxy® + dy? (i1) z =log (y sin x + x sin y)

2 .2
X"+ . . x
(111) z =log ( Y ] (tv) z=sin"! —.
xy Y

(1)

Partial Differentiation

NOTES

(given)
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Calculus—I ou ou
4. Ifu=log (tan x + tan y), prove that sin 2xa— +sin 2yg =2.
X

2 2
5. Find the value of a—;—mz a—; where z =tan (y + mx) + (y — mx)>/2.
NOTES ox dy
2
6. (a)If z(x+y) =x%+ y?, show that 9z _ 9 =4 1—%—8—2 .
ox oy ox oy
2, .2
[Hint.z = u:|
x+y
ou du
() If u = f(x* + y?) ; prove that — :—=x
ox  dy
e e (o
. x=rcos 0,y =rsin 0, prove that ox2 02 oy | -
%0 a
8. Ifx=rcos6, y=rsin0; prove that —5 +— =0, except when x =0, y=0.
ox
Hint. Dividing tan6=2 - 6 =tan" %.
9. Ifu=ev? show that 83_u = (1 + 3xyz + x2y2z2)ew?,
’ 0x0yoz
u  9%u
10. (@) If u=e* (x cosy —y sin y), show that —t—5=0.
ox?  9y?
by Ifz=1 ), show that rf - 82 = 0 wh Pe P P2
= X + [, — = r = =5 S = .
(b) If z =log (e* + ¢¥), show that rt — s where PR ayz’ axdy
2 2
(¢) If z=1log (x> + y?) + tan ! Y , prove that a—g + a—; =0.
x ox oy
2 2
(d) If z=cos (x+ y) + sin (x - y) ; prove that a_z: a_z
ox oy
y x 0%u o%u
11. Ifu=x%tan 'L - y%tan1Z verify that = .
x y dxdy  dyox

12. If u=1log (x* + y3 — x%y — xy?), prove that

L Ou 50w dw 2
W) 52 2 omy T T AETY

[Hint. 2% +y? — 2%y — xy? = (x + y) (% + y2 —xy) — xy (x + )
= (x + )% + y% = 2xy) = (x + Y)(x - )]

13.  Ifz=e™ ¥ f(ax - by), prove that bg—+a?—a; =2abz .

14. (a) If u=1log (x* + y> + 2% — 3xyz), show that a_u+a_u u_ L
ox dy 0z x+y+z
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(b) If u=,/x2 +y2 +22 , show that
2 2 2
@) (a_u) + a_u +(a—u) =1.
ox oy 0z
%u %u %u 2

(i) If u = \/x2 + y2 + 22 , prove that ax_2+W+az_2_Z'

Answers
. 2x 2y .. —x -y
. O ———7 3573 (@) ,
24y? 224 y2 (x2+y2)3/2 (x2+y2)3/2
- x . y -1
(€225) > (1) R
2 2 2 2
\/y K y\/y —X ocx/ocz—y2 x/ocz—y2
) yx '+ ylog y, & log x + xy*! i) e .yl e a log x
x+y x+y x+y

e e e
» )
(€ +eM)? (e +e¥)? (e +e)?

2. (i)
5. 0.

(i) e, —e* =Y, e Y

HOMOGENEOUS FUNCTIONS

Definition 1. In ordinary sense, f(x, y) is said to be a homogeneous function of
order n, if the degree of each of its terms in x and y is equal to n.

Thus,
PN+ p Lyt poan 2yt L +p,_xy" !l +py" LD
is a homogeneous function in x and y of order n.

This definition of homogeneity applies to polynomial functions only. To widen
the concept of homogeneity so as to bring even transcendental functions within its
scope, we define u as a homogeneous function in x and y of order or degree n, if it can

be expressed in the form
( )
b.¢

The above definition also covers the polynomial function (1), which can be written

2 n
xn{po + p1%+ pg(%J o + pn(%J :( :xnf(%)

It is a homogeneous function of order n.

as

But the functions x™ tanz, are homogeneous according to the second

Xty
xx -y
definition only.

The degree of x" tan%js n. ‘ — tanl _ xnf(lJ
x x

Self-Instructional Material
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Calculus—I
x+y  x(1+y/x) ve | 1+y/x

and W_—&(l—\/f]_x W

- xl/zf(%j so that it is of degree 1

NOTES

5‘
The function sin™! y/x is a homogeneous function of degree 0, for it may be

written as
x° (sin_1 Z)
x

The function sin (x + y) is not a homogeneous function. It can be written in the
form sin [x(1 + y/x)], which is quite different from the form x" f(y/x).

X
Note. A homogeneous function in x and y of order n can also be written as y* f(—]‘

Definition 2. A function u of three variables x, y, z is said to be homogeneous
function of degree n, if it can be expressed in the form

z
u= x”f(l, —) or y”q)(ﬁ, EJ or z”w(f, l)
x x Yy z z

More generally, a function u of several variables x,, x,, x,, ..... , &, 1s said to be
homogeneous function of degree m if it can be expressed in the form

Xy X X X x x
u= xi"f[—,—S, ...... —”J or xJ'o| =L, =2 ......2% | or etc.
X1 X X1 Xg X9 X9

IF ulS A HOMOGENEOUS FUNCTION OF x AND y OF

ou
DEGREE n, SHOW THAT a_u AND _y ARE

15) 4 d
HOMOGENEOUS FUNCTIONS OF DEGREE (n - 1) EACH

Proof. Since u is a homogeneous function of x and y of degree n, we can express

u in the form
o)
x

a n— n ’ - . d _d d
s 2 (7)) =G
X X X

2 x (a function of l) = x”_lq)(l) (say)
x x

which is a homogeneous function in x and y of degree (n — 1).
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ou 1
Again P x" .f’(lJ.— = x”_lf’(l)
y x) x X

= x"1 x(a function oflJ = xn_l.lu (%) (say)
x

which is a homogeneous function in x and y of degree (n — 1).

Note. The reader is suggested to observe from above that : du/dx is a function of both x
and y. Also du/dy is a function of both x and y.

EULER’S THEOREM ON HOMOGENEOUS FUNCTIONS

If u be a homogeneous function of x and y of order n, then
Ju Ju

+y.—=nu.

ox oy
Proof. Since u is a homogeneous function of x and y of degree n, we may express

it in the form,
o)
x

2w o2 3] e ()
ox x x)\x x x

: o np(¥\L _ nerp (Y
Again ay_xf(xj =x f( j

X

LHS. = xa—u+ya—u =x mc”‘lf(lJ—yx”_2 f’[l) +yx”_1f'[ZJ
ox dy x x x

=n xnf(l)_y-xn_lf,(l)‘i'yxn_lf,(lJ
X X X
B A
=nx"f|=|=nu=RH.S.
X
Note. FEuler’s theorem can be extended to a homogeneous function of several variables.

Thus, if u be function of m independent variables x, x,, x,, ....... , x, of degree n, then this
theorem states that

X

The proof is similar to that for two variables.

For proof of Euler’s theorem for homogeneous functions of three variables

IF ulS A HOMOGENEOUS FUNCTION IN x AND y OF
DEGREE n ; THEN PROVE THAT

0*u 0? 0*u
2 2
X" —+2x +y"—5 =n(n - Du.
o Yoxoy Y P> ( )
Proof. -+ wis ahomogeneous function in x, y of degree n
By Euler’s theorem xa—u + ya—u =nu ..(1) (Art. 8)
0x ay

Partial Differentiation

NOTES

Self-Instructional Material

107



Calculus—I

NOTES

or

Differentiating both sides of (1) partially w.r.t. x,

a( auj a( auj 9
—|x—|+=—|y—| ==—(nw
ox\ dx) ox\~ dy ox

Ju w0 ou
wZ o Y oxay | ox
7 oy o @)

Again differentiating both sides of (1) partially w.r.t. y.
(This can be obtained (by interchanging x and y in (2)))

0%u 0%u
- _ 1 el
y8y2+ 0xdy =(n ) ..(3)
Multiplying (2) by x ; (3) by y and then addmg : we get
02 02 92 u
xZax_L;+2xy axal; +y2 ayu =(n- 1)|:x—+y ay:| =(n-1)nu
| Using (1)
=nmn-1)u.
SOLVED EXAMPLES

Example 6. Verify Euler’s theorem for the function,
u= (k12 +y1/2) (xn +yn),
u= (x1/2 + y1/2) (%’n + yn) (1)

[H[(_”( P J[Hm

It is a homogeneous function of order n +

Sol.

By Euler’s theorem, we must have
ou ou

1
x$+y$—(n+§)u ...(2)
We now proceed to verify (2).

From (1), we get

2

ou_ V2 + y )™ L (" + y”)%x_l/

ve

X— ou _ =(x y¥)nx" +1(x” +y™)xY? ..(3)
ox 2

u = (x¥2 4 y P2yt

a n n 1 -1/2
. - +(x"+y") .=
Similarly, 3y (" +y") 23’

d 1
y =@V 4y Pny” + = (" +y")y Y2 o
oy 2

Adding (3) and (4),

xa—u+ya = n(x"?

vz 12
0x ¥

+ yl/z)(x” +y”)+%(xn +y™" Nx
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1 1 Partial Differentiation
=2+ y¥2) (2" + y™) {n+§} = (n+§J u.

Hence (2) is verified.

_ +
Example 7. If V = cos 1 #ﬁ’/}, show that NOTES
xa—V+ya—V+lcotV=0
ox dy 2 :
_ +y
Sol. V=cos 12T
Jx+y
cos Vo XYY x(1+ y/x) :xm( 1+ y/x J
Jx o+ \/5 xl/z(1+ yl/ZJ 1+./y/x
12

cos V is a homogeneous function of order .

x%(cos V) + y%(cos V)= %cosV

or x(—sin V)a—v+y(— sinV)a—VzlcosV
ox ay 2
VLV leosV
or ox yay 2sinV
xa—v+ya—v+lcotV:0‘
0x dy 2

Example 8. Ifu = sin~ ! (£J+ tan”! (ZJ,
Yy

x
ou ou
show that x—+y—=0,
ox dy
Sol. u=sin"! (ﬁj +tan! (ZJ
y x

xo[sin_1 (LJ +tan™! (zj] = xo[a function of Z}
y/x x X

u is a homogeneous function of order 0

0 0
By Euler’s theorem, x—u+y—u=0><u=0‘
ox dy
Example 9. If u="2"_ show il Lyl O pou
xample 9. = ,show that Y =5t X5 =—=2—.
P u x+y ogy?  oxdy Oy
2 2
4 ) Yy
xzyz T 3(96) 3¢ Y
Sol. W= Yo s\ f(_)
Xty x(1+y) 142 x
x x

u is a homogeneous function of degree 3 in x and y.
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Calculus—1 .. By Euler’s Theorem (Art. 8),
L,
ox ay
Differentiating both sides partially w.r.t. y*,

o) ) Ty Tl Ty Ty
0%u 0%u ou 0%u 0%u u

—ty—=2""= —tx—=2""
or ¥ 0xdy Y oy> dy or Y oy> ¥ oxdy  dy
which is the result to be proved.

3u

NOTES

EXERCISE B

1. (a)Ifu:xmfZ , prove that xal+yal=mu,
x ox " dy

(b) If z=F(x, ¥) be a homogeneous functions of x, y of degree m, prove that
x oF + 9 _ mz
oy
Deduce the result if m =1.
[Hint. For (@) and (b) : It is Art. 8]
(¢) If z=F(x, y) be a homogeneous function of x, y of degree m, prove that
2 2 2
xga F+2xya F +y28 F
X 0x0y ayz

=m(m - 1)z.

[Hint. Itis Art. 9]

2. Verify Euler’s Theorem for the following functions :

Y4, 14
L XTtYy .. 1 o .Y . 4 y
= log = .
® PRI @) 2yt () x sin () x 0g=
3. Wlfus= xf(l) prove that xa—u + ya_u =u
x ox dy
. y ou ou
@) If u=f| = |, show that x— +y—=0.
x ox dy

[Hint. ¢ = f(lJ = x°f(l) is a homogeneous function of degree 0 in x and y.]
x x

4. Ifu=xyf 2|, show that xa—u+ya—u=2u.
x ox ay
5. If u=sin_1M, show that al:—zal.
\/;+\/; ox x dy
2, .2
6. (o)Ifu :sin"lu, show that xa—u+ya—u=tanu.
x+y ox oy
2.2
() If sinu = Xy , show that xa—u+ya—u=3tanu.
x+y 0x ay

2
u
*This is being done because we find Pl in the result to be proved.
Y
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3,.3 by ou Partial Differentiation
(@) If u=tan™! Xy , show that x a—u+y@ =sin2u.

x—y x
2, .2
(b) If u=tan” i , prove that xa—u+y ou lsin2u.
ox " ay 2 NOTES
(¢) If u =tan™! , then prove that xa—u + ya—u = lsin 2u.
x+y ox dy 2
d) Ifu= tan™! Ery , then prove that x% + ya—z = lsin 2u.
x + y ox dy 4
3 3
(e) If u=sec” ( ] show that xg—u+y%=2cotu
1
(@) Ifu—log +y , show that xa—u+yau 3.
ox oy
Loxt y4 u . .
Hint. ——— = ¢" = z is a homogeneous function of degree 3.
x—=y
2, .2
b) If z =logx ry , prove that xa—z+yaz =1.
x+y ox oy
(C)Ifu—log(&+\/_) provethatxau a_uzl
ox dy 2
4, .4, .2
d) If y= logw show that xa—u+ ya—u=3 .
x+y+Jxy ox ay
. +2y+3
@1f sino=—"2T%_ ghow that 2%+ y P4 2% 4 3anp =0,
1/x8 + y8 +28 ox dy dz
ou ou ou _
®) If u=(2+y2+ 22712 show that x—+y—+2 -u
ox oy 92
[Hint. See Note Art. 8.]
2 2 2
fu=-2 , show that x 8_2+2y8u+y28_12420‘
x+y’ ox 0x0y dy
2 2
If u=x0 (2J+w(l}prove that xza—g+2xy o u a—zO‘
x x 0x axay E}y
[Hint. Write u = v + w, where v = x¢ (lJ and w = w( J v and w are homogeneous
x

functions of degree 1 and 0 respectively.]

. +
If u=sin 1&, prove that
Nx + 4y
2 0%u o%u 2 0%u sinu . cos 2u
X Tyt axy P S
ox 0xay oy 4cos’ u

1/2
MENWT:

/
(@) Ifu= sin_l{ :| , then show that

x V2 4 V2
ou ou -1
&y =" tanu.
@) x ™ y— w12 an u

2 2
Ou +yza—I;= tanu 15, tan? y)
0xdy oy 144

2
(23} x> gx—lg + 2xy
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v2 , Jy2)\¥2
gl x" +y
(b) If u = cosec ™| =——=——|  prove that
Tyl P
2 2 2
207U 0“u 2 0°u _ tanu 9
NOTES ozt 2xy axdy +y %7~ 144 (13 + tan®u)

11

[Hint. cosec™!{ = sin~ ?]

23 4 13

(© If sin®u=| 2
V2 +y1/2

] , prove that

2
+ y2 8_1; = tan u (13 + tan® w).
ay? 144

zaZu 9 o%u

+
2 Y oy

14. Ifu=sin"! (x2 + y?)¥5 prove that

2 2 2
xza—u+2xy 0"u yza—uzitanu(Ztanzu—&
ox? dyox ay? 25
2 2
15.  If f(x, y) = (2% + 213, prove that x2 i + 2x 9r +
p Y
ox oxdy
2.2 2 2
16. (o) If u= *y , show that xa—l;+ya—u= B_u
x+y ox dyox ox
2 2
xy o“u ou 1 du
b) If u=—="—, show that x —+y == —
N oV oxay 200

y —

COMPOSITE FUNCTIONS

of the variable t. Thus the relations
u=flx,y); x=0(),y=w)
define u as a composite function of t.
Again, the relations
2= [, ), x =0, v), y = y(u, V)
define z as a composite function of u and v.

If u is given to be a function of the variables x, y and these variables themselves
are given to be the functions of the variable t, then u ts said to be a composite function

DIFFERENTIATION OF COMPOSITE FUNCTIONS

u=flx,y); x=00),y =w()

possess continuous dertvatives w.r.t. t’ then
du_ou dx ou dy
dt ox dt ody dt’
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Proof. Here u=f(x,y) ()
Let t receive an increment 8¢ and let the corresponding increment in x, y, u by
dx, oy, du respectively. Then, we have

u+ou=f(x+dx,y+dy) ... (1)
Subtracting (i) from (i7), we get
du = flx + dx, y + 8y) — flx, y)
= [f(x+06x,y+8y) — f(x,y + )] + [f(x,y + 8y) - f(x, y)]

[By subtracting and adding f(x, y + 8y)]

Applying Lagrange’s Mean Value Theorem
[i.e., fla+h)=f(a) + hf’ (a+6h); 0<0<1]to the two differences on the right, we

have
du = dxf (x + 0,0x, y + dy) + dy . fy(x, y+6,8y);[0<0, <land 0<6,<1]

)
Dividing both sides by §t, 2—? = %; fr(x +010x,y + &y) + 8_351 fy(x,y + 0y 8y)
...@1)

Let 8t — 0, so that dx and 8y — 0.
Because of the continuity of partial derivatives, we get

Ju

ax,alylteofx(x+el &x, y +8y) = f, (x,y) = P

d Lt f.(x,y40,8) = £, y) = 2L
an ooy B YT 0200 = 1y = o)

Hence in the limit, (Zit) becomes
du ou E a_u dy

dt  oxdt oy dt @)

u
Note 1. ar is called the total derivative u, w.r.t. t.

du

af
2. ¢ °an also be replaced by ar

Cor. 1. An important special case. By supposing ¢ to be the same as x in the
above article, we get the following theorem :

When u is a function of x and y, and y is a function of x, then the total differential
co-efficient of u w.r.t. x is given by

du_oudv oudy  du_ou dm dy
dx ox'dx oy dxr % dx ox oy dx°
Cor 2. Let z = f(x, y), where

=0, v), y =y, v).

Since z is a composite function of two variables u and v, we may find dz/0u and
0z/ov.

To obtain dz/du, we regard v as a constant, so that x and y may be supposed to be
functions of u only. Then by the equation (zv) of above theorem, we get
Jz 0z ax Jz dy
ou ox au dy ou
Jz _dz Jx 0Jz Jy

...(V)

Similarly, ..(vr)

E_B_X.av dy ov

Partial Differentiation

NOTES

Self-Instructional Material
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Calculus—1 The ordinary (i.e., total) derivatives of equation (iv) above have been replaced
by partial derivatives because x, y are functions of two variables u and v.

Remark. The result of the above Cor. 2 is true even when z is a composite function of
three variables u, v, w.

NOTES

CHANGE OF VARIABLES

If z=f(x,y) (D
where x=0¢(u, v) and y = y(u, v) .2
then by Art. 11 it is possible to change expressions involving z, x, vy, g_z,a_z ete. to

X
0z 0z
expressions involving z, u, v, —, — etc.
u - dv

The necessary formulae for change of these variables are given by equations (v)
and eqn. (vi) of Cor. 2 Art. 11.

Let us treat z as a composite function of u and v.
If v is regarded as constant ; then x, y, z be functions of u alone.
By eqn. (v) of Art. 11,
Jdz 0z ox az dy

u 9x ou  y ou ()
Similarly regarding u as constant, x, ¥, z will be functions of v alone.

By eqn. (vi) of Art. 11,
0z aza_x+%@

v Ox dv dy ov - ()
On solving equations (3) and (4) as simultaneous equations in % and g_z we
x y

0z 0z
get their values in terms of — , uand v.

du’ o
If instead of equations (2), u and v are given in terms of x and y say
u=-¢(x,y) and v =n(x, y) ..(5)

then it is easier to use the formulae (treating z as a composite function of x and y)
% _d o 2w
ox Ju dx Jv ox
Jdz 0z Ju du _ dz 0z Jv

and ay u 3y oo ay ..(7

The higher derivatives of z can be obtained by repeated application of the
formulae (3) and (4) or by repeated application of the formulae (6) and (7).

..(6)

Remark. If u = f(x, ¥), where x = ¢(f) and y = y(l) ; then the equation (iv) of Art. 11
du Jdu dx au dy

namely — = — —

dt ox dt ay dt

changes the variables u, x and y in terms of u and .
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SOLVED EXAMPLES

. du ) .
Example 10. Find — when u = x2 + y%, x = at® ; y = 2at, verify by direct

dt
substitution.
Sol. Now ﬂ Ju E a_u dy (By eqn. (iv) of Art. 11)
dt ox  dt dy ~ dt
=2x . 2al+ 2y . 2a = 2.al? . 2al + 2.2at.2a
= 4a%1® + 8a?l = 4a?1(1? + 2)
Again, u=x%+ y?=d’t* + 40’
d
?? = 40’1 + 8a’l = 4a*1(1? + 2)

Hence the verification.

Example 11. If z=,/x? + y2 and x%+ y®+ 3axy = 507 find the value of dz/dx

when x=a,y=a.
Sol. The relation x° + y® + 3axy — 5a? = 0 defines y as a function of x, therefore,
z is composite function of x.

de_0z de 2 dy

_az dz dy
5 3y d (1)
oz 1 x
From z= —@2+ Yyl 2= —
x% +y2, ™ 2( y) 21

and Z=Z(x%+y gy
dy 2 [2 + 52
Also differentiating the given relation w.r.t. x, we get
32 +3y2 dy +3a(xﬂ+yJ=0
dx dx

dy dy x% +ay
2 _ (2.2 @ __xr rTay
or (8y* + 3ax) o (8x* +3ay) or dx 32 +ax

Substituting in (1), we have

dz x ( x? +ayJ
dx \/x2 +y2 x/x2+y2 Yy tax

[dz} N a _aZ+OL2
dx Jr=a \/a +a? \/az+a2 a® +d*
1

Example 12. Ifzisa function ofx andy; wherex=e*+eVandy=e*-e", show
that

0z o0z 0z 0z

w o ox oy

Partial Differentiation

NOTES

Self-Instructional Material
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NOTES

and

and

and
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Sol. Here z is a composite function of v and v.
(- z1s afunction of both x and y and x, y are functions of u, v).
By eqns. (v) and (vi) of Cor. 2, Art. 11 ;

0z 0z dx dz Ody
Eo e e (1)
ou Jdx du dy du
dz 0dz odx Oz
—=—-—+—-Q (2
v dx duv dy ov
But x=e'+elvandy=¢e* e
ox ox
P e and e e
y _ Y _
Also P e and o e
Putting these values in (1) and (2), we get
%:% u %(_e_u) _% eu _% —u
ou ox dy T oox dy - (3)
oz 0z, _,. 0z, oz _, 0z ,
=" (= + —(— - _ = _
ov ax( e ay( ¢ P aye -
Subtracting (3) and (4), we get
0z dz 0z,, _o\ 0Z ., _, o 0z 0z
———=—("+e)—— (" -e")=x——y—.
ou Jv 0x oy 0x oy
%z oz 0%z 9%z

. Prove tha + = +
Example 13. Prove that n®  y? oud ol

where x =ucos c—v sin o,y =u Sin o+ v cos .

Or
By changing the independent variables u and v to x and y by means of the relations
X=ucosa—-vsinao,y=usno+uvcos o, show that
o’z 9%z . %z 0%z
—— T — transforms into St
ou v ox dy
Sol. Let us treat z as a composite function of v and v.

0 _0zdx 0z dy

u xou dyou (D
dz 0Jzox O
9 02k, 02y )
ov Jdx dv dy dv
(By equations (3) and (4) of Art. 12)
Butx=wucosa—-vsino and y=usin o+ vcoso
= o and a_x = —sin o
oy Cos a 5y — S
Also a_y =sin oo and a_y =CoSs O
ou v
Putting these values in (1) and (2), we get
0z 0z oz .
ok cosoc+$smoc ..(3)



dz oz oz Partial Differentiation
and —=—-—sino+ — cos o ..(4)
ov  ox dy
i(z) = [cosoci + sin ociJ z
or ou dx dy NOTES
9. COSOLi+sin0Li
= o EW y ...(D)
i(z) =| —sin oci + cos oci z
and o ox o
—= —sin(xi+ cosoci
= % " dy ...(6)
N 0%z B(BZJ 9 . 9)(oz o .
[o} —_— | — | = - _ R —_—
w 02 ou\ou (oosocax + sin o 3 ) \ax oosoc+ay sin o
[by (5)] [By (3)]
2 2 2 2
= coszoca—§+sinoccosoc 0z + sino cos o +sin20c—§
0x xdy X
&—cosz ocﬁ+25in0ccosoc 2 + sin” (x& 7
or auz axg axay ayg ( )
Aeai %2 0 (o2 o coso i 0 % s
—=="|5| =|-sinot—+cosa.— || ——sina + —cos
B 502 T 9ol dv o )\ o dy
[By (6)] [by(4)]
L9 0%z . %z . 0%z s 0%z
= sin“ o— —sinocos o —sinacosa +cos” ol—s-
o2 X0y oxdy oy>
2 2 2 2
or a—jzsinzoca—i—Zsinoccosoc 9’z +coszoca—z -..(8)
ov ox oxdy oy>
Adding eqns. (7) and (8), we have
2 2 2 2 2 2
a—§+a—§ = (cos? o + sin® oc)a—j + (sin? o + cos? oc)a—j _9z a—z
ou?  ov ox ay?  ox?  oy?
IMPLICIT RELATION OF x AND y
In first year calculus, we were mainly concerned with the case in which y is
expressed explicitly i.e., directly in terms of x. Cases however are of frequent occurrence
in which y is not expressed directly in terms of x, but its functionality is implied by an
algebraic relation f(x, y) = 0 connecting x and y.
Such relations f(x, y) = ¢ (where y is not explicitly in terms of x) are called
Implicit functions and such equations define y as an implicit function of x.
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NOTES

DIFFERENTIATION OF IMPLICIT EQUATIONS

To find — dy and d
dx S.2

Y for an implicit equation f(x, y) =0 or f(x, y) =c.
dx

d
(a) To find d—i from the equation f(x,y) =0 or f(x,y) =c

Now f(x, y) is a function of two variables x, y and y itself is a function of x, so that
we may consider f(x, y) as a composite function of x. Its derivative w.r.t. x is

df _of dx Of dy

x93 dr o dx | Cor. 1, Art. 11
daf _of o dy
or de  ox ay “dx ..(D
But ﬁ: | f(x, y) =c
dx
om0 O dy _
ence x oy e
ﬂ of [of

£
=-Ix 5f 0.
axox/ay g A7

Remark. The reader is suggested to proceed as in Art. 11, if the reader is interested in

an independent proof.

dZy

(b) If f(x, y) = 0 and £, # 0, find 5

We have proved above in part (a) that

or

d_y:_af/ax
dx  of oy
F
d_y:__, where FZE and G= X of
dx G o0x ay

are implicit functions of x and y.

Differentiating again w.r.t. x, we have

64 5]

dzy__[ dx dx

dx? G2

But replacing f by F and G in equation (1) of part (a), we have
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dx  ox dy dx Mg T ay dx
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Partial Differentiation

d of /ox
Putting F= gj’z G—% an dic/ a]]:;E)y (from part (a)) ; we have
of af f—ofox f | o°f ﬂ of /ox
a2y {ay(ax axay( o oy D ax(axay % ( af/aym NOTES
dx? (af)
ay
Of (% of _of 9°f | _of (9%f of _9°f of
d?y dy | 0x® dy  dx dxdy ox | 0xdy dy  9y? ox
or -z o 3
)
azf(aff_zafaf Pt azf(af)
d2y B ox2\ oy 0x Jdy oxdy dy?2 \ox
or =

&l

SOLVED EXAMPLES

Example 14. If x° + y° — Saxy = 0, prove that

Also find the value of
dx

flx,y) =x%+y°
of

ox
*f
x>

Sol. Here

of

= 3x2 -3ay;
oy

0%f
= 6 :
* 0xdy
of

dy _ ox _

: 3.3
at the point (Ea’Ea)‘

—3axy=0

=-3a;

3x2% - 3ay

d?y  -2da’xy
2

dx (y? —ax)®’

(1)

3y2 —3ax

°f

Y

b

_ay-—x?

dx g__3y2

dy

af(af)
dzy ox? \ oy

—3ax -

L Of 0 af(af”
dx dy dxdy dy?\ ox

3 )
y° —ax

Also =-

dx? of
dy
- 2(3x% - 3ay)(3y? — 3ax)(-3a) + 6y(3x2 — 3ay)?]

[6x(3y? — 3ax)*

J

54

- 27(y? - ax)?

=_ —(yz e [xy

[x(y? — ax)? + a(x?

4 2ax?y? + a2x® + axly? —

(8y? - 3ax)?

- ay)(y? - ax) + y(x? - ay)?]

2

axS_ 21,3

a’y

+a’xy + yxt — 2ax?y? + a?y?]
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NOTES

" [xy* + xty — Bax?y? + a’yy]
—ax

(v
2 34 a3 3
=—(y2_—ax)3 [xy(® + y° — 3axy) + a’xy]
_ 2a°xy 5. s .
- (2 —ax)’® | -+ a3+ y3— Baxy = 0 (given)
3a 3a
2 2¢ .52 .22
At the point (3_a,3_a), the value of d ;; = 2 2 5= —g‘
2° 2 dx 92 _ﬁ 3a
4 2
Example 15. If f(x, y, 2) = ¢, find % and %
ox oy
Sol. fx,y,2)=c (D)

0z
This relation defines z as a function of x and y. In order to find 5 e regard

y as constant in (1) and

Therefore, 9z _ of /ox -+ By Art. 14(a), dy _ of/ox
o0x of |9z dx  of /oy
. 0z offoy
Similarly, == )
imilarly 5 5 oz
Note. We have the same results when f(x, y, 2) = 0.
*
Example 16. If x=u’- 1% y= 2uv; find ai,a_u,@,@‘
ox dy ox 9y

Sol. The given equations are
x=u?-v? (D y = 2uv (2
Differentiating both the equations (1) and (2) partially w.r.t. x ; (treating y as a
constant)

ou ov v ou
1=2u2% 2y % =9y %%
uax vax ..(3) and 0_2(u8x+vax) ..(4)

(By Product Rule)

Let us solve (3) and (4) for % and g_v
x

X
From (4), 2+ 0,

ov  du v __ ou
u£+v—x=0 or uax vax
dv__vou (5)
ox u dx

*We require partial derivatives of u and v w.r.t. x and y whereas x and y are given to be
functions of u and v.

x and y are to be treated as independent variables.
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ov Partial Differentiation
Putting this value of = from (5) in (3), we have
X

gy, 2
ox u ox NOTES
u:2u28u+228u—2 w? +v?)
X 0x 0x
ou _ u

g_ 2u? +v?)

From (5), EZ—EX 2u 5T =~ zv 5
0x u 2w’ +v°) 2w” +v%)
Similarly, differentiating (1) and (2) partially w.r.t. y and solving the resulting
equations for a_u and E : we have
oy oy
du _ v ov u

- -  _ and —=————.
dy  2w?+0v?) Iy 2w?+uv?)

EXERCISE C

1. (a) Find (Z—u , when u=xy%+ x%y, x=al?, y=2at
t
Verify by direct substitution.

b Ifz=tan'Y  x=logt,y=e find 92
x dt

2. Find the total derivative of u with respect to t, when
(@) u = cosh (l) , where x =12, y = el.
x

(b) u=e*sin y where x=1log t, y = i*.
Also verify by direct calculations.

0z az

3. Ifz=u?+1v2 u=rcos® v=rsin0;find = a .
or 86

4. Ifx=u+ v, y=uv and zis a function of x, y ; show that

U—+v—=x—+2y —
ou v ox oy
ou du ou
. = . =x+ =X — —t—=2—
5. Ifu=f(r,s);r=x+y, s=x—y, show that ox oy P
. 0z 0z 2u 0z
6. Ifz=f(x, y) where x =¢"cos vand y =e"sin v, show thaty — +tx—=e"" —,
ou ov oy
7. Ifz=u?+ 12+ w? where u=ye*, v=xe?, w== ; find % and a_z
ox oy

8. Ifw=f(x,y),x=rcosO,y=rsin 0 ; show that

(3 -(2) (2
or 2l00) lox dy )
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Calculus-I 9. Find the differential co-efficient of x%y w.r.t. x when x and y are connected by the relation
Z+xy+y2=1.

10. Find du if u =sin (x2 + y?), where a?x® + b%y? = ¢2.

dx
NOTES 11. By changing the independent variables x and y to u and v by means of the relations
2 2 2
u=x-ay, v=x+ay, show that a2 == 0%z _ 8_ transforms into 4a> o7z .
axz dy? ou dv
12. If zis a function of x and y and u and v be two other variables such that u = Ix + my,
2 2 2 2
v=Ily - mx. Show that a—2+a—_(l2 8 a_z .
ox By o o

Pu  Pu gk
13. Ifx=e"cos O, y=e"sin 0, show that —l;+—l;=e r —l;+—l; .
ox oy or 00

14. Ifx=pcos ,y=psin ¢ ; show that

(avf wY (P 1()

ox ay op p2 | 90
ay? 9 ot?

where x=scos . — ¢ sin oo and y = s sin o + £ cos a.

o 0 de_if %
16. (a) Show that oy %2 dx o dy

where f(x, ¥) = 0 and ¢(z, ¥) = 0 are given functional equations.

15. Prove that

90 of dw 8_¢8_f
ov ow du  Ju Jv

where ¢(u, v) = 0 and f(w, v) = 0 are given functional equations.

17. If o(x, y, 2) = 0, show that (a_y) (a_z) (a_xJ =_1.
oz x const ox y const ay 2 const

(b) Show that

2
18. Find d_y and d7y from the following implicit relations :
X dx
(@) &+ y* = a? (i) 223 + 218 = 213

@) ¥+ y5—5a’xy =0

19. Ify®-3ax?2+x°=0, then d—‘;} 2a’x =
dx y

20. (a) If A, B, C are the angles of a triangle such that

:O.

2 A4 Gin? B4 ain? C o b dA _tanC-tanB
sin sin sin = constant, prove that 4B —tan A —tanC "

() If a, B, y are the angles of a triangle such that

do  tany —tan
cos? o + cos? B + cos? y = k (a constant), prove that d_B = ﬁ .

21. Ifx=wu?-v,y=1*-u; ﬁnda—u au

0x ay
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If U is a homogeneous function of x, y, z of order n, prove that

Partial Differentiation
ou ou ou
X—+y—+2z =nU
ox oy 9z
Sol. This is Euler’s theorem for a homogeneous function of three independent
variables. NOTES

Here by Def. 2, Art. 7,

U:xnf (l’iJ:xn}c (u’ v)’ Wherel=u,i:v
X X x x

Now f(u, v) is a composite function of x, y, z

W _ -1 n of o o o
-—= ,0)+xt =
5 = fw,v)+x o L (u,v) + o (a e 2
u__y ov_ 2
But ax - xz ’ ax - xz
Hence U _ nx" 1 fu, v) - x"2 (ya_f + za—fJ
, ox ou ov
: U _ o _ n(df du af ov of ou 1 v
_ = —_—= _ . -1 _=—,—=O
Again, % x % x o ay % ay e (E),because oy %y
o a_U_ n—li
Similarly, % =x o
ou ou ou
x—+y—+z_
ox dy oz
_ n-1 _.n-2 af_ _ af 1af n—la_f
_x[nx f(u,v)—« ya x" :'+yx au+zx %
=nx" f(u, v) = nU.
2 2 2 2 2
If f(x, y) = 0, prove that E)_};+2 of d—y+a—};(d—yj +a—f.d—32’:0,
ox oxdy dx gy \dx dy  dx

[Hint. It is Art. 14 (b).]

Answers
¢
tlogt—1
(@) L~ 943 3 (8. + 5i) by < lo8l=D)
dt t[dogt)” +e”1]
d 1 . x
(@) —u=—2(xet — 2yt) sinh 2 b) —u:e—(siny +2t2 cos y) where x = log ¢, y = t2
dt x x dt t
2,2 -2 2y2 2 2 -2 2y
2r, 0 7. 2y= e+ 2xe y—_,2ye’“—2xey+—2
x x

18.

x (4y2 +xy — 2x2)

2
10. 2x . cos (x2 + y?) [1 ——:|

x + 2y bz
‘ a? dy _ ¥y dly P
0 -2 @ o= g gy
@iy — (x*-a y) 603 xy 2y’ +2a%) 21. 94 __ 2 4 ou_ 1 :
(y* - a’x)’ (y* -a®0)? *x duv-1 W Auw-l
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Calculus—I

THEOREM ON TOTAL DIFFERENTIALS

Let u=f(x,y) (D)

NOTES be a function of x, y which possesses continuous partial derivatives of first order w.r.t.
x and y in the domain of definition of the function.

Let x, y receive increments dx, 8y and let du be the consequent change in u, then
we have

u+du=f(x+dx,y+dy) .2
du = flx + dx, y + dy) — f(x, y)
= [flx + dx, y + 8y) — flx, y + dy)| + [f(x, y + 8y) — f(x, )]
Applying Lagrange’s Mean-value Theorem to each of the two differences, we get
du =23 . f(x+6,0x, y+ 3y +d +fy (x, y + 0,9y) ..(3)
where 0<0,<1,0<0,<1
But f (x, y) is given to be continuous
Lt f(x+6; 8x,y + 8y) = [, (x, )
There exists a + ve number ¢, s.t.
fle+0,8x,y+dy) =[x,y +e.
Similarly, there exists a + ve number ¢, s.t.
£,y +08y) = [ (x, ) + &
(3) becomes du = dx[f (x, y) + €] + Sy[fy(x, y) + &)

9 9 d 9
=[%.5x +%.8y]+[818x +edyl | f :a—:andfy :gu

Thus, the change du in 1 consists of two parts as shown in brackets, of these the
first is called the Differential of u and is denoted by du. Hence,

duza—u8x+a—u.8y ..(4)
ox oy

Let u=x,thenby (4 dc=du=1.8x+0.3y=20dx
Similarly, by taking u =y, we prove that dy = dy.

Thus, (4) takes the form du = ou dx + Ju dy.
ox oy
Note. The differentials dx and dy of the independent variables x and y are the actual
changes dx and 8y but the differential du of the dependent variable u is not the same as the

change du ; it being the principal part of the increment du.

SOLVED EXAMPLES

Example 17. If the sides an angles of a triangle ABC vary in such a way that its
circumradius remains constant, prove that

da db dc
+ + =
cosA cosB cosC

Sol. We know that circumradius R of a triangle ABC is given by

a b ¢
sinA sinB sinC
a=2Rsin A, b=2R sin B, ¢ = 2R sin C

=2R (constant (given))
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&

Taking differentials (By Art. 14)
da = 2R cos A dA, db = 2R cos B dB, dc = 2R cos C dc

da
=2RdA
cos A
db =2RdB
cos B
dc
=2RdC
cos C

Adding equations (1), (2) and (3), we have
da db de
cos A

+ =2R (dA +dB +dC)
cosB cosC

Because A, B, C are the angles of a triangle
A+B+C=mn

Takmg differentials dA + dB + dC =0

Putting this value of dA + dB + dC =0 1in (4)

da db dc

+ + =
cosA cosB cosC
EXERCISE D
0z 0z
(a) If z =log (x? + xy + y?), prove that x —+y —=2.
ox oy
2 2
(b) If u=tan! % , prove that a—+a_u=0‘
2y nZ  oy?
(a)Ifu—y +—,provethatxa—u+ya—u+za—u—0
z x y ox oy 0z
o 5 5 du du  Jdu
b)) fu=x*(y—-2) +y*(@z—-x) +2z*(x-y), prove that —+—+—=0.
ox Jdy 0z
o 5 5 ou Ju Jdu 2
(¢) If u = &%y + y?z + 2%x, prove that — + —+—=(x+y +2)°.
ox dy oz
_ N-1/2 ou au_ 2.3
(@) If u=(@1 -2xy +y?)~Y2 prove that x — -y —=y“u".
ox oy
x 0%u 1
() If u =tan™ L X , prove that = 5 537
1/1+x2+y2 oxdy (1+x°+y )/
Pu 2a2
If u=e*~%cos (x — at), show that ——
2 2
2
If u=1log (x* + y3 + 2% — 3xyz), show that (i+i+ij uz—%‘
ox dy 0z (x+y+2)

2
Hint. i+i+i u= i+i+
ox dy oz ox oy

dlfd o 0
— || =+=+=—|u
0z J\dx dy o0z

0 d 0 |(du oJu
=l —t—+—||=—=+=—+
ox dy o0z)\ox o9y

)]

Partial Differentiation
NOTES
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Calculus—I 6. The conduction of heat along a bar satisfies the differential equation

w_, P
ot s axz '
NOTES

Show that if u= A e =8 sin (nt — gx), where A, g, n are positive constants ; then g = 21 .
\/ u

7. If f(x,y)= \[xz —y%sin7! l, prove that x %+y %=f(x,y).
x ox oy
8. Ifz=e™* b f(ax - by), show by using the formula of composite differentiation that

ba—z+aa—z=2abz,
ox oy

9. Ifu=sin"!(x—y), x=31 y=41t> show that du__ 3 .
dt 142

[Hint. 1 — 912 + 241* - 1615 =1 - {2 - 81> + 81* + 161* - 1618
=(1-2)-82(1-2)+16t* (1 - 12)
=(1—12) (1 -812+ 1614 = (1 — (1 - 412)2]
10. (@) If u and v are functions of x and y defined by

. ou OJv
x=u+evVsinu,y=uv+eYcos u, prove that —=—.
dy ox
. i i i o ou
[Hint. 1. Diff. both equations partially w.r.t. x and eliminate -

0
2. Diff. both equations partially w.r.t. y and then eliminate @v}

(b) If x and y are functions of u and v defined by u =x+ e sin x, v=y + e cos «,

prove that Ox = 9y .
ov  Jdu

[Hint. Same as (@) part.]

11. Ifr:=x%2+y*+2%2and V=r" prove that 82V+82V+82V=m(m+1)rm_2
' Y P n?  o? 0l '
2 2 2
12 If z=-2 , prove that a_z+2a_z+a_z= 2 .
x -y o oxdy ogy? x-y

13. Find the second order partial derivatives of e

Answer

13, ye¥ a2 (Y +y =1, e a1+ (1+x¥) log 2”1, e x” (1+x”) (logx)?
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7. JACOBIANS

STRUCTURE

Introduction

If u, v are Functions of r, s where r, s are Functions of x, y; then
o(u,v) _ d(u,v) o da(r,s)

ox,y) dr,s) dx,y)

If J, is the Jacobian of u, v w.r.t. x and y and J,, is the Jacobian of x, y w.r.t. u

and v; then J,J, = 1i.e., du,v) ox,y) _ 4
d(x,y) o(u,v)

Def. Functional Dependence

Theorem on Functional Dependence

LEARNING OBJECTIVES

After going through this unit you will be able to:
e Def. Functional Dependence

® Theorem on Functional Dependence

INTRODUCTION
If u and v are functions of two independent variables x and y ; then the
u du
determinant gi gz is called Jacobian of u, v with respect to x, y and is denoted
ox dy
by the symbol J LY or 0w, v) ‘
X,y d(x,y)

Similarly, if u, v, w be functions of x, y, z ; then the Jacobian of u, v, w with
wLo,w) 0 (u, v, w)
X, Y, 2 0(x,y,2)

and is defined as

respect to x, ¥, z is denoted by J(

Self-Instructional Material
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Calculus—I du oJdu Jdu

Jd(u,v,w) | dv Jdv oV

a(x,y,z)_ ox Jdy 0z
NOTES ow oJow ow

ox dy o0z

In general. If £}, f,, ... f, be n functions of n variables x,, x,, ... x, possessing
partial derivatives of the first order at every point of the domain of definition of the
functions, then the determinant

oh O h
Ox; 0xy  0x,
A oy Uy
0x; Oxy  0x,
I
0x; 0Oxy  Ox,

is called the Jacobian of f;, f,, ... f, w.r.t. x,, x,, ... x.

The above Jacobian is denoted by
o(f1, fos--- Iy
M or J(fl’ f2, fn)

0 (xq, X9, ... Xp,)

SOLVED EXAMPLES
_ L ' d(uw,v)
Example 1. I[fu=x+yand v =(x +y)?; evaluate )
d(x, )
Sol. u=x+yanduv=(+y)?(given)
ou Ju ov v
o1 ==1 —=2(x + —=2(x+y)
o 1, pe and ™ (x+y), 3 y
We know by def. of Jacobian in Art. 1 that
ou Jdu

a(u,v): o @
d(x,y) |90 v |

ox @
Putting values of partial derivatives
1 1

2(x+y) 2x+y) =2(x+y)-2x+y)=0_

. . . . U,0,w
Example 2. [fu=xsinycosz,v=xsinysin z, w=xcosy, then find J (; )
x’y’z

Sol. u =xsin y cos z (given)
Diff. partially w.r.t. x, y and z respectively,

ou . du ou . .
——=s8smmycosz, 5 —XCOSYCOSZ a—z—xsmysmz
Zz

0x dy
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Again, v = x sin y sin z (given)

v . v . ov .
—=sinysinz, gZx cosysmz a—zxsmy cos z
Zz

0x
Again, w = x cos y (given)

_= — =—X Sln —:O
0x o8y, dy ’ 0z '
We know by Def. of Jacobian in Art. 1 that
Ou du du
ox dy oz
s[wow) | a0 a
x,y,z) |ox dy oz
ow dw  dw
ox dy o0z

Putting values of partial derivatives
siny cosz xcCoSycosz —xsinysinz
= |sinysinz xcosysinz xsinycosz
cosy —xsiny 0
Expanding by first row
=gsin y cos z (0 + x2 sin? y cos 2) — X cOS y COS 2
(0 —x sin y cos y cos 2) —x sin y sin 2 (—x sin? y sin z — x cos? y sin 2)
=x? sin® y cos? z + x% sin y cos? y cos? z + x? sin y sin? z (sin? y + cos? y)
=x? sin y cos? z (sin? y + cos? y) + x% sin y sin? 2z

=x? sin y [cos? z + sin? z] = &2 sin y.

d(x,y,2)

Example 3. Ifx=rsin 0 cos ¢, y =r sin 0 sin ¢ and z=r cos 6, evaluate 300
r’ ’

Sol. x =r sin 0 cos ¢ (given)

0. . o

a—izsm@cosq), a—g(;:r cos 0 cos ¢, g—z:—rsinﬁsinq)‘
Again y = r sin 0 sin ¢ (given)

%y %y

oy .
——=8inBOsin¢d, =——=rcosOsin¢d, = =rsin O cos
or ¢ 00 ¢ 00 ¢

Again z = r cos 6 (given)

o . 0
g—i:cose, a—Z:—rsme and a—z):O
We know by def. of Jacobian in Art. 1 that
ox dx Ox
or 99 9o

9(x,9,2) |y dy
o(r,0,0) or 90 9o
dz 0z 0z

o 9 9

Self-Instructional Material
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Calculus—I

NOTES
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Putting values of partial derivatives

sinBcos¢ rcosOcosd —rsinOsinod
= |sinOsin¢® rcosOsingd rsinOcosd
cos0 —rsin® 0

Expanding by first row
=sin 0 cos ¢ (0 + r? sin? 0 cos ¢) —r cos 0 cos ¢ (0 —r sin O cos O cos 0)
— 7 sin 0 sin ¢ (— 7 sin? 0 sin ¢ — r cos? O sin ¢)
=r? sin® 0 cos? ¢ + r? sin 0 cos? 0 cos? ¢ + r? sin 0 sin? ¢ (sin? O + cos? 0)
=r? sin 0 cos? ¢ (sin? O + cos? 0) + r? sin 0 sin? ¢
=r? sin 0 (cos? ¢ + sin? ¢) = r? sin 0.
Example 4. Ifu,=1-x,u,=x,(1-x,), u,=x,x,(1-x,), .....

U, =XX,..... x, (1-x); then

n

ou;,ug,...u, ) 1 n-29
=C D" x}  xy 7. .
oxy, Xg,... X, ) SRR 1
Sol. u, =1-x
0 d 0
g B
0x4 0xg ox,
u, =x,(1-x)
aﬁ:l_%aﬁ :_xl,aﬁ: L R
0x4 04 0x3 ox,,
U, = x,x,(1 - x,)
E _162(1—363), @ le(l—xS), % == XXy, ... @ =0
u, x1x2 " xn—l(l - xn)
ou aun
ﬁ =%, .8, (1-x), _8x2 =xx, .., (1—-x), ..
ou,,
x, XX X,
Juy uy 9w
ox; Odxy  Ox,
duy  Jug ouy
ox; Oxy  Ox
o(uq, Uy, ... ! 2 "
We know that a(ul lypeoln) _ Oug  Jug Jug
(21, g, ... %) 0x; 0xg ox,,
du, du, ou,
Ox; 0xy ox,,
Putting values
-1 0 0...... 0
1-x, - 0...... 0
= x9(1—x3) x1(1—x35) —X1Xg ceuens 0
Xg .., 1(1-2,) xxg...2,_1(1-2x,) ...... —X1Xg ... Xy



10.

11.

12.

= Product of diagonal entries

Jacobians

[-  determinant of a lower triangular matrix (a;=0
for i <) is the product of its diagonal elements]

= (= DEx)Exx) (= x00x,) . (XX, X, )

=D 2t x, .

EXERCISE A
(@) If u =x% v=y ; then prove that 0 (u,0) =2x
d (x,y)
() If u = x, v =132, then prove that 0 (u,v) =2
d (x,y)
d(x, y)
(o) If x=u(l +v)and y=v(d + u), show that ———=1+u+v
o(u, v)
0
If u=x*>—-2y, v=x+y; then prove that (u,0) =2x +2,
d(x,y)
J(u,v) _

If u=e*siny, v=2¢" cos x; then prove that

d(x,y)

u,v

X,y

—x2+y2 v=tan’! L
where u =4x* +y* | . for (x, y) # (0, 0).
[Hint. Reproduce Example 3 Page 260. Then put x =1,y =2.]

1
Prove that J( J at the point (1, 2) = E

a(f,
(a) Calculate the Jacobian (/.8)
d(x,y)
2 2,2 0 (u,v)
_yt o xteyt )
b) If u 2x,v——2x ; fin 3(x,y)
+ o (u,
I u=— y,l)ztan*1x+tan*1y;find (uv).
1-xy d(x,y)
0
fu=x2+y2+22 v=y, wzz;thenprovethatM=
d(x,y,2)
el s
Ifx=rcos(9,y=rsin6,z=z;thenevaluateM.
0(r,0,z)
a ) )
Ifu:ﬁ,vz2 andw:ﬂ,showthat—(uvw)=
X y V4 a(x’yyz)
a ) )
Ifu=x2—2y,U=x+y+z,w=x—2y+32;findM.
d(x,y,2)
0
Ifu=—>" , U= Y , W= d ;showthat—(u’v’w)=
y-z z-x x—y d(x,y,2)
9, v,w)

fu=xyz, v=xy+yz+zx, w=x+y+z;show that
d(x,y,2)

et sin(x +y) .

where f(x, y) =x* —xsiny; gx, y) = x*2 + x+ y.

NOTES

=(x-y)(y-2)(z-x).
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Calculus—I
13.

14.

NOTES

15.

13.

16.

d(¥1,¥2,¥3)

3 . .
If y1=%1", y5=¢*2 and y, = x, + sin x, ; find .
72 ’ ! ’ a(xl’xz’xS)

IF=xu+v-y, G=u?+vy+w, H=2u—-v+ vw ; compute

3 (F. G, H)
0 (u,w,v)
OF oF _OF . 3G . 9G .oG 9H G oG
Hint. & =, & —09 %o, g, 5, H_, o0& _ o __
{mt o T T T e Y e TP e T Y
v o o |
du oJw OJv

d(F,G,H) |0G oG 9G
9 (w,w,v) u ow o |
oH o0H oH
w0 |
Find the Jacobian of u, v, ww.r.t. x, y, z given that u=x+y + z, v2=yz + zx + xy and w?
= xyz.

{Hint.u:x+y+z = a—uzletc.
ox
V=yz+zxt+txy = 2(;@=z+y @=y—+zeto
ox ox 2v
ow ow  yz
w? = xyz = 3w — =yz o o—= etc.
Y P ox  3Sw?
Answers
- 2 2 -
(@ @x—siny) @Qx*y+1)+xcosy Qxy*+1) (b) o
0 8r 10. 10x+ 4
3 x,2 €™ cos xg 14. xw —x—xyv + 2uv — 2

—(x =)y -2)z—-x)

6ow?

X, y ; then

If u, v are functions of r, s where r, s are functions of

Iu, v) _ 9(u, v) (r,S)
(%, y) d(rys) 00xy)

132 Self-Instructional Material

Proof. Because u, v are functions of r, s and r, s are functions of x, y ; therefore

u, v are composite functions of x, y.

ou aui ou 0s

Therefore, g=g s o W r.tugs, (D)
du_oudr ouds
dy or dy "o ay U Tyt ugs, - (2)
ov Jdv dr Jv ds
— =v.r.+uv_s ..(3)

w orox osax o rleT Ut
av_avi avﬁ

dy o ay+$ay U, TS, -



du oul|or or Jacobians
_0w,v) a(r,s) | r os Em @
Now, R.H.S.= d(r,s) d(x,y) |dv Ov|lds Os
5} 0 0. )
' ’ Y NOTES
u, ug ||l
- r S Sx Sy

Performing row by column multiplication,

Up Ty HUg Sy U Ty U S,

Up Ty +Us Sy U Ty +Ug S,
Putting values from (1), (2), (3) and (4)

du du

ox Jdy

If J, is the Jacobian of u, v w.r.t. x and y and J, is the
Jacobian of x, y w.r.t. u and v ; then J,J, = 1 i.e,,
d(u,v) 0(x,y) _
(%, y) 9 (u,v)
Proof. Because J, is the Jacobian of u, v w.r.t. x and y (given), therefore u and

v are functions of x and y. So, let u = u(x, y) and v = v(x, y). Again because J, is the
Jacobian of x and y w.r.t. u and v ; therefore x and y are functions of u and v.

Combining the two ; u and v are composite functions of u and v.

Differentiating u = u(x, y) partially w.r.t. u and v ; we have

_ Jdu ox au dy

Sk ou oy ou Vet ()
ou ox au ay
N oo T, (2

Again differentiating v = v(x, y) partially w.r.t. w and v ;

ov dx dv dy
0= gﬁ 58_ =v.x,toy, ..(3)
lzﬂa—x+a—vg=v X +tuy 4)
dx dv 9y Jv xTv o Ty

d(u,v) d(x,y) o @ ou  ov
d(x,y) 0(u,v) | Jdv v || dy Oy
ox dy || du OJv

Performing row by column multiplication

LHS. = y.

Uy Xy H Uy Y, Uy Xy Uy, Y,

U, xu+vy Yu U, xv+vy Yo
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Putting values from (1), (2), (3) and (4), we have

(given)

..(5)

1
:‘ 0‘=1=R.H.S.
01
0(u,v) 0(x,y) _ lord,J,=1
d(x,y) 0(u,v)
C 0 (u, v) 1
or. .. =
0x,y) (Jd(x,y)
d(u,v)
SOLVED EXAMPLES
Example 5. If u=x(I —y), v==xy ; prove that ou,v) dx,y) =1.
dx,y) du,v)
Sol. u=x(1-y)=x—-xy ..(1) v=xy ..(Q2
ou Ju
_:1_ —_—=—X
ax y» ay ’
v @—x
ox - dy
u
0 (u,v) dx Oy 1-y -x
a(x,y): i @ :‘ y . ‘Zx(l—y)+xy=x—xy+xy=x“‘(3)
ox dy
To find 9 (x,y) , let us make x and y as functions of u, v.
0 (u,v)
Adding eqn. (1) and (2), we have
utv=x
Puttingx=u+vin 2),v=@+v)y .. y= v
u+v
xX=u+v ..(4) y= v
u+v
0x dy (w+v)0-v.1 -v
—=1 — = 3 = )
ou ou (uw+v) (u +v)
a—x—l ay_(u+v)—v_ u
v v @w+v? T (w+v)?
N
d(x,y) _|du ov| _ v u u v

0 (u,v) 9y 9y
du oJv
u+v 1 1
Twr? T uwy x YVO
Multiplying eqns. (3) and (6), we have
d(u,v) d(x,y) 1
9(x,y) dw,v) ~ Ty

= +
- w+0)? w+v)? w+v)? (Ww+v)?

...(6)



EXERCISE B

1. Ifx=rcos0,y=rsin 0; verify that

d(x,y) d(r,0) -1
d0(r,0) d(x,y)

[Hint. Squaring and adding the two equations r = 4/x2 + y2 . Dividing tan 6 =%

0= tan_1% Reproduce Ex. 2 and 3 under Art. 1.]

9(x,y) 1
J(u,v) 2

2. Ifu=x-y,v=x+y;prove that

[Use formula of Cor. Art. 3]

d(x,y,2) —uZ

3. (@lfu=x+y+z uv=y+z uvw=z; show that =
0 (u,v,w)

[Hint. From given u—uv = x +y + z—(y+2)=x, uv—uvw=y+z—z=y and uvw
=z
X=U— UL, y=UL—ULW, 2= UvW.]
(b) Find the Jacobian of u, v, ww.rt. x, vy, z
when x+y+z=u,y+z=uv and z = uvw.
4. Find the Jacobain of u, v, ww.r.t. x,y, z given that x=u+ v+ w, y=uv + vw + wu and z
= uvw.

Answers

-1
4 w-vv-ww-u’

1
3. (b —
()uzv

DEF. FUNCTIONAL DEPENDENCE

Let uy, u,, u,, ... u, be m functions of n independent variables x,, x,, ... x, .

If there exists a relation F(u,, u,, u,, ...... u,) = 0 between these n functions ;
then the functions u,, u,, ... u,, are said be functionally dependent.
Note. If u;, u,, ... u, are functionally dependent, then we also say that u, u,, ...... u, are

not independent of one another.
For example,

Let u = x2 and v =8 be two functions of one variable x
Now v=2a%= (2?3 =u? | o u=x2
or v—u®=01is the functional relation, F(u, v) = 0 between the two variables u and v.

Remark. If m > n i.e., number of functions is greater than the number of variables ;
then the functional dependence generally holds.

For example, if u=/[f(x,y), v=g(, y) and w = h(x, y) are three functions of two variables
(Here m=3,n=2);

We can solve any two of the three say u = f(x, ¥) and v = g(x, y) for x and y and substitute
the values of x and y obtained in w = h(x, y) to obtain a relation in u, v and w.

THEOREM ON FUNCTIONAL DEPENDENCE

Let uy, u,, u,, ... u, be n functions of n variables x,, x,, x,, ... x,.

Self-Instructional Material
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Then the functions u,, u,, ... u, are functionally dependent i.e., 3 a functional

relation
F,, u,,... u,) = 0 iff
0(uy, ug,...uy)
0 (Xq1y Xgyeee Xp)

=0 identically.

Remark. The proof of the above theorem is beyond the scope of this book and hence is

being omitted.

Example 6. Show that u = sin x + sin y, v = sin (x +y) are not functionally

SOLVED EXAMPLES
dependent.
Sol. u=sin x +sin y
Ju =CoS X
ox
o _ cos
oy B Y
o
dw,v) _|ax cos x

v=sin (x +y)

i=cos(x +y)
X

g—vzcos(x +y)

cos y

d(x,y) dv  du ~|cos(x +y) cos(x+y)

ox dy

=cos xcos (x+y)—cosycos (x+y)
=cos (x +y) [cos x — cos y] # 0 Identically.
By Art. 5, the functions u and v are not functionally dependent.

Example 7. Show that the functions f,(x,y,2) =x+ 2y + z, fy(x, y,2) =x — 2y
+ 3z and fy(x, y, 2) = 2xy — xz + dyz— 222 are functionally related.

Also find the relation between them.
Sol. - fi=x+2y+z
% =1 % =92 o

= =2, —==1
ax 9y oz
Again, fo=x—2y+ 3z
aﬁ_l %:—2 aﬁ=3
ox 0y "oz
Again, fo = 2xy — xz + dyz — 22°
fs
s _g
PP ay
oh O Oh
ox dy Oz

Weknow that =50 %5 = |y

o I 9fs

o oy oz
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Putting values of partial derivatives
1 2 1
= 1 -2 3
2y -z 2x+4z —-x+4y-4z
Expanding by first row
=1[2x—8y + 82— 6x — 12z] — 2[-x + 4y — 4z — 6y + 3z] + 1[2x + 4z + 4y — 2z]
=—4x—-8y—-4z—2(—x—-2y—2) + 2x + 4y + 2z
=—4x—-8y—4dz+2x+4y+t2z2+2x+4y+2z=0
Functions f,, f,, f; are functionally dependent.

To find the relation between £, f,, f, ; let us eliminate x, y, z from (1), (2)
and (3).

Squaring Eqns. (1) and (2) and subtracting, we have
fi2—172= @+ 2y + 22— (x— 2y + 32)*
= (22 + 4y? + 22 + 4dxy + dyz + 2x2) — (2% + 4y? + 922 — 4wy — 12yz + 6xz2)
=— 822 + Sxy + 16yz — 4xz
= 4(2xy — xz + 4yz — 227) = 4f,,. By (3)]
or L =17 =41,
which is the required relation between the given functions f,, f, and f;.

EXERCISE C

1. Let fi(x, y) = % and f,(x, y) = tan~ ! x + tan~ ! y be two functions. Are f,(x, y) and
f5(x, y) functionally related ?

2. Show that the functions
u=x+y—-z v=x—y+z w=x>+y>+ 2> —2yz are not independent of each other. Also find
the relation between them.

3. Show that the functions

u=3x+2y—2z v=x-2y+zand w=xx+ 2y —2) are not independent and find the
relation between them.

4. Tfu=x+y+z v=xy+yz+zx, w=x>+y>+2°—3xyz; Show that u, v and w are connected
by a functional relation and find it.

[Hint. w=x>+y>+2%-3xyz = (x+y+2) 2+ y>+ 22— (xy + yz + 2x))
=@+y+2)[(x+y+2)7? -2y +yz+2x0) - (xy +yz + 29)]
=(@+y+2) [(x+y+2)7% =3y +yz+20)] = u@? - 3v).]

5. Ifu= X , U= 24 , W= z ; prove that the above functions are not independent
y -z z-x x—-y

and find the relation between them.
[Hint. Find uv + vw + wu.]

6. Show that the functions u=x2+y?>+ 2>, v=xy —xz —yz, w =x+ y — 2z are dependent.

Answers
Yes ; /; and [, are functionally dependent.
2. ur+uvi=2w 3. u - 1?2=8w
4. w=u®-3uv 5. uv+vw+wu+1=0.
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NOTES 8. TANGENTS AND NORMALS

STRUCTURE

. . d
Geometrical Interpretatino of d_y
X

Find the Equation of the Tangent at any Point of the Curve y = f(x)

Find the Equation of the Normal at any Point of the Curve y = f(x)
Parametric Coordinates

Angle of Intersection of Two Curves

Polar Coordinates

For any Point (r, 0) of the Curve r = f(0), the angle ¢ between the Radius

do
Vector and the Tangent is given by tan ¢ = f o

LEARNING OBJECTIVES

After going through this unit you will be able to:
e Parametric Coordinates
¢ Angle of Intersection of Two Curves

e Polar Coordinates

GEOMETRICAL INTERPRETATION OF :—i

Let y = f(x) be a continuous function of x.

Let the curve AB represent graphically the function y = f(x).

Let P(x, y) be any point on the curve.

Let Q(x + dx, y + dy) be a point in the neighbourhood of P.

Join QP and produce it to meet the axis of x in R

Let ZXRP =6. Draw PLL and QM L OX and PN 1 MQ

Now PN=LM=0OM-OL=x+ (dx) —x=0x
NQ=MQ-MN=MQ-LP=y+ @y) —y=3y
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X
ZNPQ =2XRP =0
_ NQ _dy :
tan 6 = PN ox ()]

Now as Q — P, x — 0, secant PQ becomes the tangent PT at P and 6 — y where
y = «XTP

Sy )
tan y = QI:}P tan 6 = st—tm 5 [From (i)]
@y
dx

d
Hence Ey = tan y = slope of the tanget at P(x, y).

Remember 1. The angle which a tangent makes with positive direction of x-axis
is denoted by v

2. tan y = slope of the tangent

dy

I tan y = slope of the tangent at (x, y)
Cor. 1. If the tangent is parallel to x-axis then y = 0

b t =tan 0=0

g~ tany =tan 0=
Cor. 2. If the tangent is perpendicular to x-axis then y = 90°

dy de 1

— =tany =tan 90° =~ or —=—=

dx v dy dy

dx

FIND THE EQUATION OF THE TANGENT AT ANY POINT
OF THE CURVE y = f(x)

Let P(x,, y,) be any point on the curve y = f(x)

d
Slope of the tangent at P(x,, y,) is the value of Ey at this point.

Let this value be denoted by m.

Self-Instructional Material
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Calculus—1 Now the tangent at P is a line through P(x;, y,) Y4
having slope m.
Equation of the tangent at P is
y—y, =m(x—x,;) | Using point-slope from
NOTES Note. Equation of tangent to the curve y = f(x) at P(x1, y4)
the point (x, y) is

dy
_y= 2 (X -
Y-y dx( X)

158 4

Since (x, ¥) is a point on the curve, weuse XandY 0 T
for the current coordinates.

Rule to find the equation of the tangent at a point
d
1. Find Ey from the equation of the curve. This gives the slope of the tangent

at the general point (x, y).

d
2. Find the value of Ey at the given point (x,, y,). This gives the slope of the

tangent at (x,, y,)
3. Now equation of the tangent is y —y, = m(x — x;) where m denotes the slope
found in step 2.

FIND THE EQUATION OF THE NORMAL AT ANY POINT
OF THE CURVE y = f(x)

The normal to a curve atany point P(x,, y,) is YA
the straight line through the point perpendicular to B
the tangent to the curve at that point
Let the slope of the tangent to the curce at N
P(x;, y,) be m. P(x1, ¥1)
Then slope of the normal to the curve at
A
1
P(x;,y,) = -— | —ve normal \
m b
X O T X
Equation of the normal to the curve at v
P(x;, v 1s
1 .
Y-y, = E(x -x1) (Point-slope form)
or (x—x)+m@y—-y)=0

Rule to find the equation of the normal at a point

d . .
1. Find d_y from the equation of the curve This gives the slope of the tangent
X

at te general point (x, y)

dy
dx
tangent at the given point.

2. Find the value of at the given point (x;, y;). This gives the slope of the
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3. Find the negative recirprocal of the slope of the tangent at (v, y,). This gives
the slope of the normal at (x,, y,).

4. Now equation of the normal at (v, y,) is y —y; = m(x — x;) where m denotes
the slope found in step 3.

SOLVED EXAMPLES

Example 1. In the curve 3b%y = x° — 3ax?, find the points atwhich the tangent is
prallel to the axis of x.

Sol. Equation of the curve is

3b?%y = x* — 3ax? (D
Differentiating w.r.t. x,
d
322~ 342 _gax
dx

d_y x% - 2ax :x(x—Za)
dx bZ bZ

= Slope of tangent at (x, y)
If the tangent is parallel to the axis of x,
dy
dx
When x =0, from (1), y=0
When x = 2a, from (1),

=0 soox=0, 2a

3b%y = 8a® — 12a® = —4a®
_4d®
Y7 2

Hence the required points are (0, 0) and [Za, - ;;LQSJ
Example 2. Find the point on the curve

x=a® + sin 0), y=a(l — cos 0)
where the tangent is perpendicualr to x-axis. (0<0< 2n)
Sol. The equations of the curve are

x=a® + sin 0), y = a(l — cos 0)
Differentiating w.r.t. 6, we have

dx dy .
= =a(l+ = —q
40 a(l + cos 0), 40 a sin 0
dy . 6 0
d_y_@_ @ sin 6 _2s1n§cos§:tan9
dx dx a(l+cos0) 9 cog? O 2
- cos
do
If the tangent is perpendicular to the x-axis, then y = g so that
dy ¢
— =tan y = o
dx any

Self-Instructional Material

Tangents and Normals

NOTES

141



Calculus—I

NOTES

tan6 T
S _. - T
= 2 2

N | @

X =a(m+sin ) = an
y=a(l —cosm) =a[l — (1] =2a

Hence the required point is (an, 2a).

Example 3. Find the point on the curve y = 3x2 — 2x — 4 at which tangent is

perpendicular to the line x + 10y — 7 = 0.
Sol. Equation of the curve is

y=23x2-2x—4
d_y =6x—2
dx

This is the slope of the tangent at (x, y)

Slope of the line x+ 10y —7=01s —%

Since the tangent is perpendicular to the given line

1
- -—|=-1

= bx—2=10 .. x=2
Putting x = 2 in (1), we have
y=12-4-4=4
The required point is (2, 4)

[m:

(1)

_ co-eff of x
co-eff of y

[m,m,=—1]

Example 4. Find the equation of the normal at (a, a) to the curve x%y° = a’.

Sol. Equation of the curve is x2y3 = a®
Differentiating both sides w.r.t. x,

dy dy
2xy® +8x%y? =L = s ===
XyT Aoy 0 I
Value of ay at (a, a) = _2a_ 2
dx 3a 3
Slope of tangent at (a, a) = —%
3
Slope of normal at (a, a) = 5

Equation of normal at (a, a) is

3
y—a= E(x_a) or3x—2y—a=0

Example 5. The equation to the tangent at the point (2, 3) on the curve

yZ=ax®+bisy=4x- 5. Find the values of a and b.

Sol. Please try yourself Eq. of tangent at (2, 3) is y = 2ax — 4a + 3
2a=4and-4a+3=-5 = a=2

Equation of curve is y> = 2x>+ b

The point (1, 1) liesonit .. 1=2+b = b=-1
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Example 6. Find the points on the curve
y=x?f—6x5+ 13x2— 10x +5

where the tangent is parallel to y = 2x. Also prove that the two these points have the
same tangenlt.

Sol. Equation of the curve is y = x* — 6x% + 13x2 — 10x + 5 ..@)

&y _ 4x® — 18x% + 26x — 10
dx

The tangent is parallel to the line y = 2x
Slope of tangent = slope of line = 2

i.e., @ =2 o 43 —18x2+26x—-10=2
dx
or 2x% —9x2+ 13x - 6=0 ... (i)
By inspection of x = 1 satisfies it
Dividing L..H.S of (i) by (x — 1) by synthetic division

112 -9 13 -6

2 -7 6
12 -7 6 [0
Depressed equation is 2x? —Tx+ 6 =0
7+,49-48 7+1 3
X = = = 2, —
4 4 2
. . . . . 3
Abscissae of points, tangents at which are parallel to given line, are 1, 2, 3
when x = 1, from (), y=1-6+13-10+5=3
when x =2, from (1), y=16—-48+52-20+5=5
3
when x = — | from (¢), yzﬂ—§+£—l5+5:§
2 16 4 4 16

The requried points are A(1, 3); B(2, 5); C(g,f_gj
(b) - Tangents at A, B, C are parallel to the given line
Slope of tangent at A, B, C = 2

Equation of tangent at Aisy — 3 =2(x — 1)

ie., 2c—y+1=0
Equation of tangent at Bisy — 5 = 2(x — 2)
ie., 2c—y+1=0

The points A and B have the same tangent 2x —y + 1 = 0.

Example 7. For the curve y = 4x° — 2x°, find all the points at which the tangent
passes through the origin.

Sol. Equation of curve is
y = 4x® — 2x° ()
Let the tangent at (x,, y,) pass through the origin

dy
A 2_2 1_4
» 12x Ox
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Calculus—I Slope of tangent at (x,, y,) = 12x? — 10x]
Equation of the tangent at (v, y,) is
y—y, =122 - 10x}) (0 —x,)
y, = 12x — 10x) ()

NOTES
Also (x,, y,) lies on the curve (i)
. v, = 4ad — 227 ... (1)
Subtracting (3) from (2),
0 =8} — 8x}
or 8xf(1—-aH)=0 . x,=0%1
when x; = 0, from (3), y,=0
when x; = 1, from (3), y, =2
when x; =— 1, from (3), y,=—2

Hence the required points are (0, 0), (1, 2) and (- 1, — 2).

Example 8. Find the equation of the tangent line to the curvey = ([5x -3 -2
which is
() parallel to the line 2x —y + 9 =10

(1) perpendicular to the line 5y + 2+2x =13

Sol. Equation of the curveisy= /5x -3 -2 ..(D
dy _ Lige_gyv2. L _g-_ 5
dx 2 dx 2,/5x - 3
(@) Given lineis 2x —y+9=0 )
Its slope = 2
If the tangent is parallel to (2), then slope of tangent is 2
5
m =2, Squaring 25 = 16(5x — 3)
_ 13
or ¥=30
73 f73 5 3
t1 .:_‘ = — —-3-2==—-92=—=
Putting x 30 in (1), y 16 1 "
. 73 3 .
Thus at the point 80 1 the tangent is parallel to (2)
. . 3 73
Equation of tangent is y + 1- 2| x — i 80x — 40y = 103
@i1) Given line is 5y + 22x =13 .3
Its slope = — ¥

. . .5 .
If the tangent is perpendicular to (3), then slope of tangent is m, negative

reciprocal of slope of (3).
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5 5
2f5x-3 22 " Jox -3 =2
or bx—-3=2 . x=1

Puttingx=11n (1), y = J2-2

Thus at the point (1, J2 - 2), the tangent is perpendicular to (3)

Equation of tangent is

y-(Z-2) = > (x-1)
202

NG

or N2y -4+4+4y2 =b5x -5
or 22y —5x + 442 +1 = 0.

Example 9. Prove that the equation of the tangent at the point (4m?, 8m?) of the
curve y° = x5 is y= 8mx — 4x° and that it meets the curve again in the point (m?, — m?).
Show that if 9m? = 2, tangent is also a normal lo the curve.

Sol. Equation of the curve is y? = x?

. o dy dy 3x*
oy _o99 . DX _2
Differentiating, y T 3x¢ . dx 2y
dy Y o s 3.16m'
Value of T at (4m?, 8m?3) = 988 - 3m

Slope of tangent at (4m?, 8m?) is 3m
Equation of tangent at (4m?, 8m?) is y — 8m? = 3m(x — 4m?)
or y = 3mx — 4m? ()
(1) meets (1) where (eliminating y)
(Bmx — 4m?)2 =3

mangent atP

Q
2 3 Normal at Q P
(m®, —m") (4m?, 8m?)
or X% — 9m2x? + 24mi*x — 16m° =0
or @ —m?) (* —8mix+ 16mH =0 or (x—m? (x—4m??2=0
or x=m?, 4m2, 4m?
From (i1), y=—m3, 8m>, 8m?®.

(i1) meets (i) in two co-incident points (4m?, 8m?) and its therefore, a tangent at
(4m?2, 8m?®)
The third point of intersection is (m?, — m?)

3m* -3m
Slope of tangent at Q(m?, —m? = — om? 2

Slope of normal at Q = 2
3m
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Calculus—I If tangent at P is normal to the curve at Q, then

2
d3m=— .. 9m?=2
3m
NOTES Example 10. Show that the length of the portion of the tangent to the curve x>/°
+ y2/5 = a?/3 intercepted between the co-ordinate axes is constant.
Sol. Equation of curve is x2° + y2/3 = ¢2/3
Differentiating, zx_l/3 + zy_md—y =
3 3 dx
dy £ 13 - YU3
or — = =3 =" 13
dx y 173 JRTE
Y13
Slope of tangent at (x, y) = =55
x
Equation of tangent at (x, y) is
13
Yoy= - 25X -x)
x
Y y X
or = —=t— 5
PR B VE RV
X Y ‘
or _x1/3 + —1/3 — x2/3 + y2/3 — a2/3 | Of (l)
YA
B
A B
0 X
OA = intercept on x-axis
— 23 13
OB = intercept on y-axis = a?%y!/3
Required length = AB = \JOA? + OB? = \/a*3(x23 + y2%)
= [g¥3. 423
= va? = a which is constant
Example 11. Prove that all points of the curve
y2= 4a[x +asin f}
a
at which the tangent is parallel to the axis of x lie on a parabola.
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(@)

Sol. Let (x,, y,) be a point on y* = 4a(x +asin®
a

the tangent at which is parallel to x-axis

TE
yi= 4(z(x1 +a sin x—l) ... (i) NOTES
a
Diff. (@) 2y & _ 4a(1+a cos X l)
dx a a
or d_y — z_a(1+cos i)
dx y a

2 x
Slope of tangent at (v, ¥,) = y—a(l + cos 31)
1

Since tangent at (x,, y,) is parallel to x-axis
Slope of tangent at (x,, y,) =0

2a x
_(14‘00831):0 or 1+cosx_1:0

N a
cosx—1 =—1
a
sinx—1 = 1—coszx—1 =J1-1=0
a \/ a
From (17), y? = 4dax,

(x,, v,) lies on y? = 4ax, which is a parabola.
1N

2 2
Example 12. Prove that the line Ix + my +n =0is a normal to — + =2 =1 f
a

a2 b2 =(a2 _b2)2

Sol. Let the line Ix + my +n =20 ..(1)
2 2
X Y
be normal to —t5 =1 (2
o+ @
at (vy, yy)
2 2
x; )
a_12+b_; =1 |~ (x;, ;) lies on (2)]
Differentiating (2),
2a 2y dy
= =22
a2 b? dx 0
dy _ _bx
or dx  a%
b2x,
Slope of tangent at (v,, y,) = ~ 2
a 'y
a’y
= Slope of normal at (x,, y,) = b2 L
X1
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Equation of normal to (2) at (v, y,) is

2
oy = — an (x —x,)
y y1 ngl 1
NOTES 2 2
or b_y -b% = ax_g?
N X1
2 2
or ﬂ—b—y—(aQ—bQ) =0 (D
X1 Ns1
Equations (1) and (4) both represent the equation of normal to (2) at (x,, y,)
They are identical. Comparing co-efficients, we have
a2 b
oo =@ b
I  m n
na’ nb?
= X, = "5, V= 5 -
1 l(aZ_bZ) yl m(aZ_bZ)
Putting the values of x; and y, in (3), we have
1, n’at + 1, n?b* _
a2 l2(a2 —62)2 b2 m2(a2 _b2)2
or n’a* + n?b? _
l2(a2 —62)2 m2(a2 _b2)2
a® b (a® -b%)?
o Z o om? n’
which is the required condition.
EXERCISE A
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® ®

10.

11.

At what points on the curve y = sin x is the tangent parallel to the x-axis?

Find the points where the tangent is parallel to x-axis and where it is parallel to y-axis,
for the curve.

Find the point on the curve 2y = 3 — &2 the tangent at which is parallel to the line
x+y=0.

Find the equations of the tangent and the normal to the curve y = x® at the point (2, 8).
Find the equation of the tangent at to the curve 2x? + 3xy + 5y? = 10 at the point (1, 1).
Find the equation to the normal at the point (af?, 2atl) of the curve y? = 4ax.

Find the co-ordinates of the point on the curve y = x> + 3x + 4, the tangent at which
passes throug the origin.

Find the equation of the normal to the curve 3x% — y? = 8 parallel to the line x + 3y = 4.
Find the equation of the tangent line to the curve y = x% + 4x — 16 which is parallel to the
line 3x—y+1=0.

Find the equation of the tangent to x> = ay® at (4am?, 8am?) and also the points in which
the tangent cuts the curve again.

x
Prove that a +2 1 touches the curve y = be /@ at the point where the curve crosses the

b

axis of y.



12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

n n
x
Prove that the curve (xj +(‘Zj =2 touches the straight line “ + % =2 at the point
a

(a, b), whatever be the value of n.

Prove that the sum of the intercepts on the co-ordinate axes of any tangent to

Jx + \/; =+Ja is constant.

X X
el ¥ =
Prove that in the catenary y = zle“ te a] the perpendicular drawn from foot of the

ordinate of any point on the curve upon the tangent at the same point is of constant
length.

If the normal to the curve x%/3 + y2/3 = g?* makes an angle ¢ with the axis of x, show that
its equation is y cos ¢ — x sin ¢ = @ cos 20

2 2
x
Find the length of the tangent to the ellipse —5 + ’2}7 =1 intercepted between the axes.
a

Tangents are drawn from the origin to the curve y = sin x. Prove that their points of

contact lie on the curve x2y2 = x% — y2.

2 .2
. x
If x cos o + y sin o = p touches the curve —5 + 72/2 =1 then show that
a

a? cos? o + b? sin? o = p?
Find the condition that the straight line x cos o0 + y sin o = p may be a tangent to the

2 yZ

curve = —=_ =1
a® b
Prove that the condition that x cos o + y sin o = p should touch x™y" = @™ is

prttm™ -n = (m + )™M @™ - cos™ o sin” o

x n/n-1 n/n-1
If x cos oo + y sin o = p touches the curve (j +(‘Zj =1, prove that
a

(a cos a)™ + (b sin o))" = p"

n n
If x cos oo + y sin o = p touches the curve (xj +(‘Zj =1, show that
a

(al)n/n—l + (bm)n/n—l =1
2

If Ix + my = 1 is a normal to the parabloa y? = 4ax, prove that al® + 2alm? = m?.

PARAMETRIC COORDINATES

To find the equation of the tangent and nor-mal at any point ‘t’ of the
curve given by x = f(t) and y = ¢(t)

Equations of curve are

x =f(t)}
t=0)

. dy _dyldt _¢@)
Slope of tangent at ‘t’ = dr  duldi __f’(t)

The point ‘ means the point [f(t), 0(&)]
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Equation of tangent at ‘t’ is
(¢
Y —o(0) = %[x - ()
@)

o’(2)

Equation of normal at ‘¢’ is

Slope of normal at ‘¢’ = —

@)
y— o) o) i
Example 13. Find the equations of tangent and normal at any point of the curve:
(@) x=at?, y=2at b)x=a( +sint), y=a(l—cosl)
) x = at?
Sol. (@) Equations of the curve are
y =2at
dx dy
— = 2al; — =2a
dt a dt “

dy dyldt_2a _1

dx dx/dt 2at t

1
Slope of tangent at ‘t’ = n

Equation of tangent at ‘t’ i.e., at (at?, 2at) is

1
y—2al = ;(x -at?)

ty — 2at® = x — at?
or ty=x+ at? ..
Slope of normal at ‘¢’ =—1t
Equation of normal at ‘¢’ is
y —2at = —t(x — at?)

or lx+y=2al+ at? .. (1)
x =a(t+sint)

(b) Equations of curve are y=a(l-cost)
dx 2 t
— =qa(l+ = 2a cos” —
az a(l + cos t) a B
dy , .t ot
= —q N = 2 —Ccos” —
da a(sin t) a sin 2 2
d_y = —dy/dt :tani
dx dx /dt 2

. t
Slope of tangent at ‘t is tanE
Equation of tangent at ‘t’ is

t .
y—a(l —cos t) = tang[x —a(t +sin t)]

9a sin? t sint/2
T — — =
© Y 2 cost/2

[x —at — 2a sin t cos i}
2 2



t . ot t .t .t . ot t
or y cos —— 2a sin” — cos — = x Sin — — at sin — — 2a sin” — cos —
2 2 2 2 2 2 2
or xsini— cosi = azf,‘sini
2 V%% 2
Sl f lLat ‘v ——_—00132
ope of normal at 't = tant/2 9

Equation of normal at ‘¢’ is

t .
y—a(l —cos t) = —cot E[x —a(t +sint)]

.ot cost/2 .t t
or y —2asin” — = = x —at — 2a sin — cos —
2  sint/2 2 2
.t . st t t .t R
or sin — — 2a sin® — = —Xx cos — + at cos — + 2a sin — cos” —
Y8 @8t 2 2 2 2
or xcos£+ysin——atcos£+2asin£ coszi+sin2£
2 2 2 2 2 2
t t t .t
— +ysin— = at cos —+ 2a sin —
or xcos2 ysm2 9 2

Example 14. Find the equation of the normal at the point 0’ on the curve x =3
cos 0 —cos® 0, y = 3 sin 0 — sin’ 0 and show that at the point, where © =n/4, the normal
passes through the origin.

x =3 cos 0 — cos® 9:‘

1. E 1 f th . . @
Sol. Equations of the curve are y:3s1n9—s1n3 0 @)
dx ) . .
20 =—3sin 0 —3 cos? 0 (—sin B) =— 3 sin O(1 — cos? 0)
=-3sin0 -sin?0=-3sin>0
dy . .
%:30089—3811129(}089:3COSQ(1—SID29)

3cos 0 -cos?B=3cos®0

dy dy/do _ 3 cos® 0
dx ~ dx/d® -3sin® @
Slope of tangent at ‘0" = — cot® 0

=—cot® 0

Slope of normal at ‘@’ = tan® 0
Equation of the normal at ‘0’ is
y — (3 sin B — sin® ) = tan® O]x — (3 cos 6 — cos® 0)]

. 3
or y—3sin6+sin36=Sm3e[x—3cos6+cos36]
cos” 0
y 3 x 3
— Y ——+1 = - +1
or sin® 0 sin%0 cos® ®  cos® @
or xsec36—ycosec36=3;— !
cos?6 sin? 0

= 3(sec? 0 — cosec? 0)
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T
At 6= 1 eqation of normal is

3T 3 T T T
x sec® = — y cosec® = = 3| sec— — cosec? =
4 4 4 4

x(V2) - (2% = 32" - (V2)’] or 242x — 242y =0

x —y = 0 which clearly passes through the origin

EXERCISE B

Find the equation of the tangent and normal to the curve x = a cos 6, y = b sin 0 at the
point ‘0.

T
Find the equations of the tangent and normal at 6 = By to the cycloid x = a(6 — sin 9),

y=a(l —cos 0)
Show that the equation of the tangent to the curve is of the form x cos® 0 + y sin® 6 = a.
Find the equations of the tangent and the normal on the curve

n
x=acos®0,y=bsin®0 at the point 6 = 1

Find the length ofthe portion of the tangent intercepted between the co-ordinate axes at
any point of the curve x =a cos®t, y=bsin®1.

Prove that the portion of the tangent to the curve x = a cos® 0, y = a sin® 0 at the point 0,
intercepted between the axes, is of constant length.

ANGLE OF INTERSECTION OF TWO CURVES

152 Self-Instructional Material

defined ast he angle between the tangents to the
two curves at a point of intersection.

intersection at P(x;, y,).
at P to the two curves.

then

1.

Definition

The angle of intersection of two curves is  va

Consider the two curves y = f(x) and y = f(x)
Let m, and m, be the slopes of the tangents

If q is the angle between the tangents at P,

(0]
0 2
tan 0= 7,
1+mm,
In particular, if m;m, =— 1 the curves cut orthogonally, and if m, = m, curves

touch each other.

Working Rule:

Solve the equations of the curves simultaneously to find their point (or points)
of intersection.



Tangents and Normals

d
2. Find é for both the curves separately.

. . , . . d
3. Take one of the points of intersection. At this point find the value of 2 for
dx NOTES
both the curves separately. These values gives us slopes of the tangents to

the two curves at that point of intersection. Call them m, and m.,,.

m —my

1+mm,

Note. Sometimes, it is convenient to take (x;, y;) as a point intersection.

4. Angle 6 between the curves is given by tan 6 =

SOLVED EXAMPLES

Example 15. Find the angle of intersection between the curuves.

(@) x> —y?=a®and x> +y? = (242 (b) y2 =ax and x* + y* = 2a°
(c) x2 +y2 = 222 and xy = a? d)x2+y?=8and xy =41

(e) y? = 4ax and x* = 4by

Sol. (a) Let (x;, y,) be a point of intersecstion of the curves

¥-yi=a 0!
and a2 +y? = [9q2 ... (i)
Then &2 —y? = a? ... (1)
x12+y1: \/§a2 (Ll’)
Adding 2x2 = g?(\2 +1)
Subtracting 2y = a?(2 -1)
Multiplying A¢y? = a'2-1) = a’
: 2x.y, = £ a? .. (V)
. d dy «x
For the curve (1), 2x - 2y£ =0 o 5
For the curve (i1), 2x + 2yd—y =0 .. d_y X
dx dx vy
X1 X1
At (x,, y,) slopes of tangents are = and - —
N N

%_{_%] 2%,
Y1 ) _ N 2x1y

tan 0 = = =
1+%P%]1_ﬁ 7 -]

= —_az | -+ of (v) and (zi1)

:j:l

The angle between the curves = 45°
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Calculus-1 (b) Equations of curves are y? = ax ..

x2 + y? = 2a? ... (10
Eliminating y between (i) and (i7)
NOTES 2+ax—2a°=0 (x+2a) (x—a)=0
x=-2a,a
when x = — 2a from () y2=—2a?

which gives imaginary values of y and is rejected
when x = a from (@) yi=a?,y=%a

The two points of intersections are (a, a) and (a, — a)

. dy dy «a
2 — = . e —

For the curve (1), y 7 @ dx "2y
For the curve (1), 2x + 2yd—y =0 . Y __x
dx dx y

1
At (a, a) slopes of tangents are 3 and — 1

S-CD S
tan 0, = =—5——=7 =3
1+=(-1) =
2 2
8, = tan! (3)
1
At (a, — a) slopes of tangents are —= and 1
1-[ - ; 3
tan 0, = 1 Z% =3
1+1f -2 2
(-3) 2
0, = tan"! (3)
(c) Equations of curves are x% + y2 = 242 ..@)
xy = a?
2
From (if) y=2
x
ot
From (i), x? + — =2a% x'—2a%* +a'=0
x
@?—a??2=0,x2-a*=0orx==%a
when x=afrom (1) y=a
when x=-afrom (@) y=—a

The two points of intersection are (a, @) and (— a, — a)

: dy _ b __x

For the curve (1), 2x + 2ya =0 .~ I 5
d d

For the curve (i1), ¥+ g L B_Y

dx dx x

At (a, a) slopes of tangents are — 1 and — 1 i.e., equal.
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The curves touch each other.
At (— a, — a) slopes of tangents are — 1 and — 1 7.e. equal

The curves touch each other.
Hence at each point of intersection, the curves touch each other
(d) Please try yourself. It is part (¢) with a =2

(e) Equations of curves are y? = 4ax ()]
x? = 4by ... (10
2
.. X
F , =
rom (it) y 7
4
From (i), =4ax or x(x*—64ab?) =0

16b*
x =0, 41223
when x = 0 from ()

when x = 4a'?b%? from (i)

2/37 4/3
_ 16a776™" Aa2/3p1I3
4b
The points of intersection are (0, 0) and (4a'*b?3, 4a2/3b1/%)
. dy _ dy _2a
For the curve (0), 2ya =4a .. dx  y
d
For the curve (i7), 2x = 4b£ Z—z = %

13 13
2a
At (4a?b??, 4a%*b'3) slopes of tangents to (1) and (2) are PYATE and ATE

If 6 is the angle between them, then

2a1/3 a1/3

pl3  opli3 B
1 2a1/3 . a1/3 ) 2/13 2(a2/3 + b2/3)
+ b1/3 2b1/3 + b2/3
.y i 3a1/3b1/3
0= tan 2(a2/3 + 62/3)

At (0, 0) slopes of tangents are « and 0 i.e., axis of y and x are tangents of two
curves. Hence the curves cut each other orthogonally at (0, 0).

A 341/3p1/3
tan 6 =
a

Example 16. Show that the curves

2 2 2 2
+ =1 and + =
a®+1, b+, AT, bty
can orthogonally.
1 1
Sol. Let 5 =1 5 =m
a® + b*+ M
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Calculus—1 Equations of curves becomes Ix%2+ my?=1 ()

and I +m'y2=1 ()
They cut orhtogonally if
NOTES 1 1 1 1
I m U m
ie., if @+ 1) —(b?+A)=(*+ L) —(b*+1L,)
ie., if a? — b? = a2 — b? which is true

Hence the curves cut orthogonally.
Example 17. Find the condition that the curves

x2 y2 x2 y2
—+=— =1and — + 5 =1 may cul orthogonally.
a b a B
1 1
Sol. Let — =1, —=m
a b
1 1
- = l’ e ’
o g™
Equations of curves are Ix2+my?=1 ..@)
and "2+ m’y?=1 ... (i)
They cut orthogonally, if
i1 1. 1
I m U m
or if a-b=a-
EXERCISE C

1. Find the angle of intersection between the following curves:
y?>=2xandx®+y2=8
2.  Show that the curves x* — 3xy? + 2 = 0 and 3x2y — y® = 2 cut orthogonally.
3. Find the angle of intersection of the curves
y% = 2ax and y2 = a? — x2
4. Show that the curves Ix> + my? =1 and I'x®> + m’y?> = 1 will intersect orthogonally if

1 1 1 1

5. Show that the curves ——— +—2— =1 and = ‘Z—Z =1 cut orthogonally.

6. Show that the circles x2+ y2+ 2ax+¢c=0 and x2+y2+2by+c¢=0

o 1 1 1
t0u0h1f72+*2:*‘
a® b ¢
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POLAR COORDINATES

Let O be a fixed point and OX a fixed straight line P(r, 0)
through O. The positive direction of OX is indicated by
the arrow-head. The fixed point O is called the pole or
the origin and the fixed straight line OX is called the
initial line or the polar axis. Let P be any poitn in the
plane containing OX. Join OP.

The length OP is called the radius vector of the
point P and is denoted by ‘7. The angle XOP is called the § B>
vectorial angle of the point P and is denoted by ‘©’. The X
numbers r and 6 taken together in this very order are called the polar coordinates of
the point P and we write it as P(r, 0).

If (x, y) are the Cartesian coordinates of P, then
x=rcos6, y=rsin6

_ [2 2 _ -1)
P = 0= tan "=
and r=qxt+yc, .

FOR ANY POINT (r, 0) OF THE CURVE r = f(0), THE ANGLE
o BETWEEN THE RADIUS VECTOR AND THE TANGENT IS

GIVEN BY tan ¢ = r%

Let P(r, ©) be any point on the given curve B
r=f(®) or f(r, 6) = 0.

Let Q(r + dr, 6 + 80) be a point in the
neighbourhood of P on the curve.

Join OP, OQ, PQ. Then
OP=r,0Q=r+5or
Z/XOP =6, ZX0Q =6 + 66

Q(r + 3r, 6 + 36)

so that ZP0OQ = 86

Draw PR 1 OQ.

Let £ZPQR = ..

Let the angle between the radius vector OP and the tangent PT
1.e., Z0PT =¢

From rt. Zd A OPQ, % =sind0 .. PR=rsin 0

RQ=0Q—-0OR =@+ 8r) —OP cos 80 =r + &r — cos 80
= 8r + r(1 — cos 80) = dr + 2r sin® %

PR rsind0
RQ &r+2rsin®80/2

tan o =

Self-Instructional Material
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Dividing the numerator and numerator by 36

Calculus—I
sin 66
"8
= Not
o= S sing0/2, 80 o
NOTES 56 50/2 2
Note. When Q — P along the curve oo — ¢
[+ ultimately PQ becomes the tangent PT and OQ coincides with OP]
sin 66
" 50
tan ¢ = QI;tP tan o= S%Qto or sindB/2 . 86
—+r————— sin —
RG] 30 /2 2

r-1 r

T dr/dO+r-1-0 dr/de

do
Hence tan 0 = r—

dr
Remember. ¢ is the angle between the radius vector and the tangent
Relation between 0, ¢, y: y =6+ 0 (v «ZXTP = /ZTOP + ZOPT)

ANGLE OF ITNERSECTION OF TWO CURVES

Let the curves r = f,(6) and r = f,(0) intersect in P.
Let ¢;, ¢, be the angles between the common radius vector and OP and the

tangents PT,, PT, to the two curves
Angle of intersection of two curves = angle between their tangents at a point of

Intersection

OC:¢1—¢2OI‘ | ¢1_¢2|

P(r, )
95
T1
T2
X
Cor 1. For orthogonal intersection
s s
= — KR = — 4
“= 9 0= 5t

or tan ¢, ‘tan ¢, =—1
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Cor. 2. If a = 0, then tan ¢, = tan ¢,

The two curves touch if tan ¢, = tan ¢,.

SOLVED EXAMPLES

Example 18. Find the value of ¢ for the curve

™ =a’ (cos mO — sin. m0) at the point 6 = 0.
Sol. Equation of curve is r™ = a™ (cos m0 — sin m0)

Taking logs, m log r = m log a + log (cos m6 — sin m0)

m dr —m sin mO —m cos m0
Diff. w.rt.0 — — =0+
W.rL.8, r do cos m0 — sin m0
1 dr _sinm9+cosm9
or r do  cosm0—sin mO
do cos m0 — sin m0
tan 0 = r—=——
dr sin mO + cos m0O
1-0 3n
At0=0 t = - =—1=tan—
’ o= -5 any
3n
Hence Q)—z

Example 19. Find the angle between the radius vector and the tangent in each
of the following curuves:

(@r=a(l +sin0)atd=n/6
(©)r=a(l +cos0)atO=m/2
(e)r=ab

2a
(1) - =1-cos0

(b) r=acosec’0/2at 0 =m/2
(d) r® =a?cos 20 at © =n/6
@ r™ = am cos mo

Sol. (a) Equations of curve is r = a(1+ sin 0)

& 0
70 = @ cos
do . 1 1+sin6
—r—=a(l+ 0)- =
tan ¢ rdr a1+ sin 8) a cos 0 cos 0
1+1
s 1+sinn/6 9 3 2 NG
) = — ; = = = — = 3
At 0 6’tan¢ cos /6 J3 2 3
2
o= T
3
) . 2 0 )
(b) Equation of curve is r = @ cosec 3 ()
dr 0 0 0) 1
— = a* 2 cosec —| —cosec —cot — | —
do 2 2 2) 2

Tangents and Normals

NOTES
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40 .0 0 .
- ~cot—=—rcot — ;
a cosec 200 2 rco 5 [ - of (1)
t —r@—r'—1 ——tang
an ¢ = dr —-rcot0/2 2
i i 3n 3n
AtO= = : = —tan —=tan— ., = —
to o tan ¢ 1 " (0] n
(¢) Equation of curve is r = a(1 + cos 0)
dr )
%Z—asma
do
’ =r—=a(l + cos 0)-
tan ¢ rdr al ) a sin 6
2co0s260/2 0 n 0
=—-—————F—F——=-cot—=tan| —+—
2 i 0 2 2 2
sin — cos —
2 2
o 70
2 2
i T nm 3n
A/ = — = —4 —=—
to 2’ 0 2 4 4
(d) Equation of curve is 12 = a? cos 20
d
Diff., 2rd—g = _ 942 sin 26
dr _ a”®sin 20
do r

. B @—r _ r _ r
an ¢ = dr a? sin 20 a? sin 20

2
a” cos 20 .
= 7 cof @
a? sin 20 | ©
= —cot 20
T T T T 51
) - - . = — t—:t — 4+ — :t _
At © 6 tan ¢ cot = an(2 3) an —
o 5T
6
(e) Equation of curve is r = a0 .. Q)
dr
Diff. — =q
do
do
tanQ):r%:g:G | -+ of (i)
d=tan' 0

() Equation of curve is r™ = a™ cos m0
Taking logarithms, m log r = m log a + log cos m6



m dr 1 .
1 ) — — =0+ (= 0
Diff. w.r.t. 6, e p— (= m sin m0)
1~£— t 0
or 7 an m
tan ¢ = r%—cot mGztan(g+m9)
T
= —+mb
= (0] 5 m

a
(¢) Equation of curve is - = 1—cos 6

Taking logarithms, log 2a — log r = log (1 — cos 6)

1 dr 1 .
. e P — (s 3
Diff. w.r.t. 0, = a0 l—cose(l )
¢ _r@_l—cose
an ¢ = dr sin O
2sin®0/2 0 0
=———— —=—tan—=tan| T—-—
9gi 0 2 2
sin — cos —
2 2
= —n—g
0=7"y

Example 20. Show that the angle between the tangent at any point P and the

line joining P to the origin is the same at all pointsof the curve log (x*+y%) =k tan="/x.

or

Sol. Equation of curve is log (x + y?) = k tan™" A
x

Changing to polar coordinates by putting x? + y? = r?

and tan! Y = 0, we have
x

log r? = kO or 2 log r = kO

. 2 dr dﬂ_g
Diff., > de t Tk
2 12
tan ¢ = % s 0= tan 1%

Example 21. Find the angle of intersection of the curuves
r=a(l +cos 0); r =b(1—cos 0)

Sol. Equations of curves are r = a(l + cos 6) .. (@)
and r=>b(1 —cos 0) ... (1)
For the curve (),
dr )
2 =—asmn 0
r@ =al+cos0) ———
dr —asin 0
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Calculus—I - 92 cos? 0/ 2 et 9
2sin0/2cos06/2 2
tan ¢, = —cot 9
NOTES 2
. d .
For the curve (ir), @ b sin 0
do
do
=~ =bd-cos0) ————
r dr ( ) -bsin®
2sin?0/2 0
= - =tan —
2sin0/2cos06/2 2
0
tan ¢, = tan —
0, )

"T I+
Sol. Equations of curves are r = s
and r=1_

For the curve (1)

Taking logs,
log r = log a —log (1 + cos 6)
1 dr —sin 0
Diff. ; do - _1+cose
2sin0/2cos0/2
- 2cos? /2
= tan9
2
do 1 0
tan ¢, = ra=m=cot§
~tan ¢, tan ¢, =—1
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cos 0

cos 0

r’ =a? cos 0 + b? at an angle tan‘l[

0 0
tan ¢, tan ¢, = —cot; tanE:—l

Hence the two curves cut orthogonally.
Example 22. Find the angle of intersection of the parabolas

a __ b
and r = 1-cosO
e )
cos e VA
b .
... (1)
For the curve (i1)
Taking logs,
log r = log b —log(1 — cos 6)
1 dr sin O
Diff, ——=0-—"—
" r do 1-cos®
__2sin0/2cos0/2
2sin”? 0/2
= —cot Q
2
.40 1
tan ¢, = dr cot 0/2

Hence the two curves cut orthogonally.
Example 23. Show that the circle r

=b culs the curve
2

)

2



Sol. Equations of the curves are r = b .. (@) Tangents and Normals

and 1?2 =a? cos 20 + b? ..(@@)
Eliminating r, b? = a? cos 20 + b?, cos 20 = cosg
NOTES
i i
2 = — = — Al =
or (] 2 0 1 sor=b>b
Point of intersection is (b,%
For the curve (i) For the curve (ii)
Zr% =— 2a? sin 20
&y . dr_ _a’sin2
do h do r
e r do r’
tan g = r—=—=-o0 tandp=r—=—————
=TT 0= a? sin 20
tan ¢, = [tan ¢l ) tan ¢, = [tan 0l 4,
b2
= oo - — a_2
n B b2
o, 5 or —tan%—a—2
—cot o, = b_2
2
i _a
_tan(E_%J = b_2
2
i a
tan ===
2
T _ -1 a
q)z _5 - tan b_2
2
T aqa
0y = 3 + tan >

2
Angle of intersection of curves = ¢, — ¢, = tan ™ [Z—z]

EXERCISE E

1. Show that in equiangular spiral r = ae®<°* % the tangent is inclined at a constant angle to
the radius vector.

1
2. Find the angle at which the radius vector cuts the curve — =1 + e cos 6.
r
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If f1is the angle between the tangent to a curve and the radius vector drawn from the

dy

xdx
dy '
x+ydx

region of co-ordinates to the point of contact, prove that tan ¢ =

Prove that the tangent at any point (r, 6) on 12 = 2 sin 20 makes an angle 30 with the
initial line.
Prove that the spirals " = @™ cos n6 and r"* = b" intersect orthogonally.

Prove that the curves r? = a? cos 20 and r = a(l + cos 0) intersect and an angle

1/4
3sin (3] .
1

Show that the curves r'* = a™ sec (n6 + o) and r* = b" sec (n® + B) intersect at an angle
which is independent of @ and b.



Envelopes and Evolutes

9. ENVELOPES AND EVOLUTES NOTES

STRUCTURE

Family of Cuves
Definition and Method of Finding the Envelope

To Find Envelope When Equation of Family of Curves f(x, y, @) = 0 is a
Quadratic in ‘o
To Find Envelope When Equation of Family of Curves f(x, y, &) = 0 is of Form

Envelope of a Family of Curves f(x, y, a, b) = 0, Where Two Parameters a, b
are Connected by a Relation

Geometrical Relation Between a Family of Curves and its Evolute

Evolute as Envelope of Normals

LEARNING OBJECTIVES

After going through this unit you will be able to:
¢ To Find Envelope When Equation of Family of Curves f(x, y, o) = 0 is of Form

¢ Envelope of a Family of Curves f(x, ¥, a, b) = 0, Where Two Parameters a, b
are Connected by a Relation

FAMILY OF CURVES

Consider the equation (x — )2 + y? = a2. YA
It represents a circle of radius a having its

=a
centre (o, 0) on the x-axis at a distance o y
from the origin. If we keep a fixed but allow o
to take different values, then we get a series of

circles each of which is of equal radius a, but
differs in the position of its centre on x-axis.

A system of curves formed in this way is
called a family of curves and the quantity o y=-a
different values of which give rise to different
members of the family is called the parameter
of the family of curves. In general, if f(x, v, ) be a function of x, y and an arbitrary
constant o, then the equation f(x, y, o) = 0 represents a family of curves for different
values of o, and o which is constant for the same member of the family but is different
for different member curves of the family, is called the parameter of the family.

Y!
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Calculus—I A family of curves may also be represented in parametric form as x = f (i, o),
y = ¢(l, o), where o is the parameter of the family, and { is a parameter for each
member of family.

For example equations x=ao cos {, y = sin [ represent a family of concentric
NOTES circles x? + y? = o2. Here o is the parameter of the family of circles, whereas { is a
parameter of any particular member of the family.

Let f(x, y, ¢) = 0, where ¢ is a parameter give a family of curves, then the two
members of the family f(x, y, o) =0, and f(x, y, o+ da) = 0 corresponding to pararmelric
values o, and o+ do.of the parameter ¢, are said to be consecutive or contiguous members
of the family. If these two consecutive members cut in a point, then the limiting position
of this point of intersection as 8o tends to zero is called an ultimate point of intersection
of two consecutive members of the family.

DEFINITION AND METHOD OF FINDING THE ENVELOPE

Definition. The envelope of a family of curuves is the locus of the limiting position
of the points of intersection of any two consecutive members of the family, when one of
them tends to coincide with the other, which is kept fixed.

Let f(x, v, ¢) = 0 be a family of curves, ¢ being the parameter.
Let flx,y, ) =0 ..@0)
and flx,y, o+ dx) =0 (7))

be two consecutive members of family, corresponding to values o, and o + 8o of
parameter c.

The envelope will be locus of points of intersection of (i) and (i), as da tends to
Zero.

The points of intersection of two members, satisfy (i) and (i) simultaneously
and, therefore, also satisfy the equation

f(x> ) o+ 80() _f(x> ) OC) = 0
Dividing both sides by do,
f(x7y:(x+6(x)_f(xaya(x) —
dot
Proceeding to limit as do. — 0, we see that the limiting positions of points of
intersections of (i) and (i1), satisfy the equation x

Lt f(x,%(x‘*‘&x)—f(x,y,o() —
do.— 0 oo
i.e., % =0 ..(1)
These points being points of intersections of curves (i) and (it) also satisfy (iii).
Hence these limiting positions of points of intersections of curves (1) and (i) satisfy
eqns. (1) and (i17) simultaneously.

r.e., 0.

0

the equation of the envelope is obtained by eliminating o from
equations (i) and (ii) i.e., from the equations

f
f(x,y, a) =0 and g—OC:O.
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9
Cor. If we can solve equations, (1) and (1i1) i.e., f(x,y, o) =0, and % =0 for x and

yin terms of o, in the form x = f(cr), y = ¢(cr), then these two equations are the parametric
equations of the envelope, o being the parameter.

SOLVED EXAMPLES

Example 1. Find the envelope of the families of following curves :
@) (x — 0)2+ y? = 4a, where o is the parameler.
@) (x — @)%+ y2= a2, where o is the parameler.

Sol. (i) Equation of the family of curves is (x — 0)?+ y?= 4o LD
Differentiating partially w.r.t. the parameter o, we get
-2x—-o) =4 or —2x+20=14
or 200=4 + 2x or a=2+x ..(2)

Eliminating o between (1) and (2),
[By putting the value of o from (2) in (1)], we get
(-22+y*=4@2+x)  or 4+y2=8+4x
or yi=4x+4 or y2i=4(x+ 1)
which is the equation of the envelope.
(11) Equation of the family of curves is
(x— )2 +y?=02 or x2+02-20x+y?=02
or fle,y, 0) =x%+ 32— 200 =0 LD
Differentiating both sides of eqns. (1) partially
w.r.t. parameter o, we get
-2x=0 or x=0 ..(2)
It 1s not possible to eliminate oo between eqns. (1) and (2) because eqn. (2) does
not contain o.
Hence, the given family of curves (1) does not have an envelope.

Note. This example 1 (ii) part illustrates that every family of curves need not possess an
envelope. As proved in Art. 2, that the equation of the envelope is obtained by eliminating
between the equations

fx, y, ) =0 ..(0) and %=0 )

and this eliminant is the condition that equation (i) in parameter oo may have a pair of equal
roots. Hence, we conclude that

(1) a family of curves in which the parameter occurs only in the first degree, will not have
an envelope.

(@@1) if the family of curves is to have an envelope the parameter in it should occur at least
in the second degree.

TO FIND ENVELOPE WHEN EQUATION OF FAMILY OF
CURVES f(x, y, c) = 0 IS A QUADRATIC IN ‘’

Let the quadratic equation f(x, y, o) = 0 in parameter o, be of the form
A2+ Ba+C=0 (D
where A, B, C are functions of x and y.
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Calculus—1 Differentiating, (1) partially w.r.t. o, we get

2A0+ B=0, or oc:—3 ..(2)
2A
NOTES Eliminating o between (1) and (2) (by putting the value of o =— % from (2) in
(1)), we get
_B\? _ 2 2
A(—BJ +B(—BJ+C:O or B _B e
2A 2A 4A 2A
or B2-2B2+4AC=0 or -B2+4AC=0
or B2 -4AC=0,

which gives the equation of envelope.

Hence, if the equation of a family of curves is a quadratic in the parameler, the
equation of its envelope is obtained by stimply putting its discriminant equal to zero.

TO FIND ENVELOPE WHEN EQUATION OF FAMILY OF
CURVES f(x, y, o) = 0 1S OF THE FORM
Acoso+Bsinoa=C

Let the equation of the family of curves be
Acosoa+Bsina=C ()
where A, B, C are functions of x and y, and o is the parameter.
Differentiating () w.r.t. o, we get
—Asinoa+Bcosa=0 ...@1)
In order to eliminate between (i) and (it), square these equations and add. We
get
A2(cos? oo+ sin? o) + B2(sin? o + cos? o) = C2
or A? + B2 =(?
which is the required equation of the envelope.

SOLVED EXAMPLES
Example 2. Find the envelope of the family of trajectories
gx”
y=xtanoa-—>—5—, being the parameter.
2u” cos“o

Sol. The given equation can be written as

2 2

y=x tanoc—gx—zsec2 a=x tanoc—gx—2
2u 2u

Multiplying by 2u?, we get  2u?y = 2u?x tan o — gx? — gx? tan? o

(1+ tan? o)

= gx? . tan? o — 2ux . tan o + (2uly + gx?) = 0.
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This is a quadratic in tan o, hence its envelope is given by
Discriminant = 0 i.e., B — 4AC = 0 (By Art. 3)
i.e., Autx? — 4gx2Q2uly + gx?) =0
Dividing by 4x?, we get ut —guly + gx) =0
or u* —2ulgy —g2x2=0 or 2uigy+gi?=u"
This is the required equation of the envelope.
Example 3. Find the envelope of the family of curves

2 2
2 0s0-2—sinb-c=0 for different values of 0.
x Yy
Sol. Transposing term(s) independent of cos 6 and sin 0 to R.H.S., equation of
family of curves is

o2 2
—cosO——sinB=c (1)
x y
Differentiating partially w.r.t. parameter 0, we have
2 2
—a—sine—b—cosezo ..(2)
x y

Squaring and adding equations (1) and (2), we get

4 4
a . b .

— (cos?0 +sin?0) + — (sin? 0 + cos? ) = ¢2
x

o b
X2 52
Example 4. Find the envelope of the family of curves x cos 0 +y sin 0 =1 sin 0 cos

0 ; 0 being the parameter.

=c?  which is the required equation of the envelope.

Sol. Equation of the family of curves is
xcos 0+ ysin 0=1[sin 0 cos 0
Dividing every term by sin 6 cos 6, we have
.x 2 =
sin® cos6
Diff. both sides of eqn. (1) partially w.r.t. 6,

—xcosecBcotO+ysecOtan =0

or xcosecO+ysecO=1 (D)

1 cos® 1 sin6 or xcos® ysin®

or - X

"sin® sinB  ° cosf  cosd sin20  cos?0
Cross-multiplying y sin® 6 = x cos® 0

.3
sin“6 x
g-=— Or tan®0=> (2
cos“0 y y
Let us eliminate 0 from eqns. (1) and (2)
From eqn. (2), o 4y s
X
x 1/3 x1/3
tan0=| — = W
y y 0
1/3
y
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Calculus—I
23 4 y2/3 23 y2/3
secO= [——=+— and cosecO=,——>—
y1/3 13

Putting these values of sec 0 and cosec 0 in eqn. (1),

NOTES \/x% Ly 23 . \/x% 4923 l
X. y =
3 y1/3
or x2/3 +yz/s (x2/3 +yZ/S) =1 or (x2B+y¥3)32=]

Raising both sides to the power %, (23 + y208) = 203

which is the required equation of the envelope of the given family of curves.

EXERCISE A

1. Find the envelope of following families of the curves :
@) y=mx + 2 m being the parameter.
m

(i) tx® + 12y = a, t being the parameter.

2 2
(m)—2+ zy 5
a R4 —o

=1, o being the parameter and interpret the result.

[Hint. Put o2 = {]
2. Find the envelope of the curves

(1) x cos o0+ y sin o0 = p where o is the parameter

2 2 2
Gi) & cosb _ b”sin® - % for different values of 0.
x y a

(@it) x cos O + y sin 6 = a(1 + cos 0) where 0 is the parameter.
3. Find the envelope of the family of curves

x? + y? — 2ax cos o — 2ay sin o0 = ¢?, where o is the parameter.
4. Find the envelope of ellipse, x=a sin (6 — &), y = b cos 6,

where o is the parameter.

5. Find the envelope of the family of straight lines

b .
a CANPS . b2, « being the parameter.

coso  sin o

Find the envelope of the family of lines ax cos 0 + by cot 8 =a? + b2, 0 being the parameter.

7. Find the envelope of the family of curves

x3 y3
3 +—=———=1, 0 being the parameter.
a” cos® b°sinB

8. TFind the envelope of the family of curves y = t>(x — 1), t being the parameter.

Answers
1. () y*=4ax 1) 25+ 4ay =0
@11) (&% —y? + k%2 - 4k2x? = 0. This equation represents a square, the equations of whose
four sides are x + y + R = Oandx+ty-k=0.
at bt
2. ()Pt yr=p? (@ir) S t—5="% @11) x2 + y2 = 2ax
x

y2 aZ
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3. 4d’(@?+y?) = (2 +y7 - cd)? 4. *=a? 5. (ax)??+ (by)*? = (a* - b%?
3

6. (a2 - (by)? = (a% + bH?3 7. 4+ 1 8. 4x° = 27y.

ENVELOPE OF A FAMILY OF CURVES f(x, y, a, b) = 0
WHERE TWO PARAMETERS a, b ARE CONNECTED BY A
RELATION

Let the equation of the family of curves be

f(x>y> a, b):() (I/)
where two parameters a and b are connected by the relation
0(a, b) =0 ...(11)

If convenient eliminate one of parameters a or b between (1) and (i7). The
resulting equation now contains only one parameter and its envelope can be found by
the method already explained in article 2

But if it be not convenient to eliminate one parameter (which generally will be
the case) we may regard one of the parameters say b as function of the other parameter
a, and then differentiating (1) and (1) partially w.r.t. a, we get

of of db _ 99 , 09 db

()] and — =0 ..G)
Joa ab “da oa ab “da
(-+ By formula of Implicit Differentiation, differentiating f(x, y) = ¢, we have
af o dy
Ty 0

Elimination now of a, b, Z—b between the four equations (1), (1), (zit) and (v),
a

gives the equation of the envelope.

SOLVED EXAMPLES
Example 5. Find the envelope of the family of lines
x y .
—+==1 (
5 @®
where a and b are connected by the relation a™ +b"=c ... (i)

and c 1s a constand.

Sol. Differentiating (i) and (17) partially w.r.t. a regarding b as a function of a,
we have

1db

_a_z_b_z.%: 0 ... @) and na" '+nb"" “ =0 ...@v)
2
From (i11), ab =— b_x Putting this value of db in (Iv), we get
da a2y da
_ 12 n+1
na" ' +nb" 1 bzx =0 or na”_lz—nb 5 X
a’y ay
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Calculus—1 Dividing by n and cross-multiplying

an+1y:bn+1x or a’jc+1 :bny+1 (l)
ow equation of envelope 1s obtained by elimmating a an etween (1), (11
and (v)
From (v), we have
*x oy
a _b
a® b"
x Yy x ¥
T b o B a ¢ atc
a _b_a b -+ If —=—; then each fraction =
a” b a" +b" b d b+d
1 ) ..
= [+ of @) and (17)]
x 1 and Y- 1
an+1 c bn+1 c
an+lzcx and bn+1:Cy
1 1
a=(x)"*! and b= ()"

Substituting these values of a and b in (ir), we get

n n n n n n

1 1 1 1 1 1
)n+ +(cy)n+ =c or cn+ xn+ +cn+ yn+ =c

(ex

n

Dividing both sides by ¢"*!, we have

n n 1 n 1

xn+1+yn+1:c n+1:cn+1

which is the equation of the envelope.
Example 6. Find the equation of the envelope of the family of curves

m m
LA A (1)
a™ b™
where a and b are connected by relation a? + bP = c? (2

Sol. Regarding b as a function of a, and differentiating (1) and (2) partially
w.r.t. a, we have
p-1 @ —

.4
da 0 @

-mx™  my™ db_o 0

p-1
m+1 _bm+l'£_ and pa +pb

a
Let us eliminate Ja from equations (3) and (4).

-my™ db _ mx™

From eqn. (3) ——= -
bm+ da am+

db _ xm bm+1

da ym am+1
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Putting this value of dab iy eqn. (4), we have
da

~ B K™ bm+1
pap 1—pbp ' m m+1:
y" a
Dividing by p and multiplying by y” a™* !, we have
ym am+p:xm bm+p
xm m xm m
" m T y7 7*27
or R A or & =92 -2
am+p bm+p aP bP aP +bP
m m
or x Y _ - [-- of (1) and (2)]
am+p bm+p Cp
From first and third members @™ "2 = ¢? x™
1
S a:(cpxm)m+p
From second and third members b *P = ¢P y™
_1
b:(cpym)m+p
Putting these values of @ and b in eqn. (2), we have
_p _pP
(Cpxm)m+p + (cpym)m+p =cP
) P> mp
or Cm+pxm+p_{_Cm+pym+pch
p2
Dividing every term by ¢™*?, we have
mp mp mp B p? _ pm

which is the required equation of the envelope.

EXERCISE B

Y1 , where parameters a and b

Find the envelope of the family of straight lines — + b

NOTES

1.
are connected by the relation
@) a*+ br=c" @ a+b=c i) a® + b2 =2
) a®+b>=c? (v) ambr =cmtn (i) ab = ¢2, ¢ being a constant.
1/2 1/2
2. Find the envelope of the family of parabolas [—:‘ + [—:‘ =1, when
a
@) a*+ b =" (i) a+ b =c, ¢ being a constant.
xm ym
3. Find the envelope of curves, — +=—=1, when
am bo"
(i1) ab = ¢2, ¢ being a constant.

@) a+b=c, and
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Calculus—I 4. Show that the envelope of the straight line of given AB
length [, which slides with extremities on two fixed

straight lines at right angles is x2/3 + y2/3 = [2/3,

[Hint. Let us take the two fixed straight lines at right b
NOTES angles as axes. Let the equation of the line with its
ends on the given L lines as axes be £+%:1 where o a A X
a
a?+b2=12]
Answers
1. (l) A/ntl 4 yn/n+1 — cn/n+1 (Ll) x1/2 + y1/2 — 01/2
(ili) 2213 + y2I3 = (213 (iv) 34 + 3t = ¢34
) (m + n)m+n XMy = m™m nt cmtn
(1) 4xy = 2
2. (l) xn/2n+1 + yn/2n+1 — cn/2n+1 (ii) x1/3 + y1/3 — 01/3
3. (l) xm/m+1 + ym/m+1 — cm/m+1 (ii) 4xy =2

SOME MORE ILLUSTRATIVE EXAMPLES

Example 7. Find the envelope of the circles whose centres lie on the parabola
and which pass through its vertex.

Sol. Let the equation of the parabola be y? = 4ax (D)

We that any point on this parabola is P(at?, 2at) and vertex of 0(0, 0)
this parabola is O(0, 0).

Centres of the circles are points of parabola (1) i.e.,
centre is P(at?, 2at).

Since the circles pass through the vertex O(0, 0),
therefore radius = Distance OP

= Jat? - 02 + (2at - 02 = Vo t* +4a® ¢

Equation of the circles is (x — o)? + (y — B)? = r?

i.e., (x — atd)? + (y — 2ab)? = at* + 4a?t?
or X2 + a2t - 2axt? + y? + 4a2t? — dayt = a*t* + 4a2t?
or x2 - 2axt® + y% - 4dayt =0
or - 2axt? —4ayt + ¥ +y*=0

Dividing by — 1, 2axt® + dayt — (> +y) =0

which is a quadratic in parameter ¢.
Equation of the envelope of these circles is B2 - 4AC =0
or 16a%y? + Sax(x2 + y3) =0
Dividing every term by 8a,
2ay2 + a8 +xy2=0 or a°+yi(x+2a)=0

Example 8. Show that the envelope of a family of parabolas

1/2 1/2
(f) + 2 =1 under the condition ab = c¢? is a hyperbola having its

a
asymplotes coinciding with the axes.
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Sol. Equation of the hyperbolas is

% 1/2 y 1/2
(;) +(z) =1 ..(1)

-(2) NOTES
Differentiating both equations partially w.r.t. a, regarding b as a function of a,

Envelopes and Evolutes

where ab = ¢

V2 ia_1/2+y1/2 ib—yzzo
da da
ve 1) —sg2 o 1),-32db
or x (—5 a +y 3 b azo ..(3)
and a%er.l:O ..(4)
From (4) , @=—2
da a

Putting this value of db in eqn. (3),
da
_Y vz o +ly1/2 b-3/2 b _ 0
2 2 a

Dividing by —% and multiplying by a,

x1/2 a—1/2_y1/2 b—1/2:0
X Y x y
*_1X-o A
o \/; \/; o a b
x y x|y
\/; \/; \/;+\/; x y 1
or 11 1+1 e TV 2 [By (D]

A T
a 2 b 2
Squaring *_ i and % = i
a
a=4x and b=4y

Putting these values of @ and b in eqn. (2), we have
4x . 4y =c?2 or 16xy=c?

which we know is a rectangular Hyperbola with asymptotes as axes.

EXERCISE C

Find the envelope of the circles, whose diameter is the radius vactor of the parabola
2 —
v =4ax.

Show that the envelope of the family of circles whose diameters are the double ordinates
of the parabola y? = 4ax is the parabola y*> = 4a(x + a).

Find the envelope of the circles drawn upon the central radii vectors of the ellipse
2 2

+ =1as diameter.

Q|§-§

DN

c~|‘<
DN
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10.

11.

12.

10.

2 2
Find the envelope of the circles which pass through the centre of the ellipse x_z + i—z =1
a
are their centres are upon its circumference.
xZ yZ
Show that the envelope of the polars of the points on the ellipse h—z + k_z =1 w.rt. ellipse

2 2 h2x2  p242
. x” Ry

X
i =1 1s =1.
a? at b*

%

2 2
[Hint. We know that any point on the ellipse 2—2 + z—z =1 is (h cos 0, k sin 0).

We also know that equation of the polar of the point (h cos 8, k sin 0) w.r.t the ellipse

x? .
a2

2 .
y_=1isx.h(2:0s6+y.k21n6:1 .
b2 a b

Show that the envelope of the straight lines joining the extremities of a pair of semi-

2 2 2 2 1

. . . X y . . Y
conjugate diameters of the ellipse = + < =1 is the ellipse —5 +=5=—=.
jug pse a2 Pse 272 79

[Hint. We know that the extremities of a pair of semi-conjugate diameters of the
ellipse are (a cos 0, b sin 0), |:a cos (g + e), b sin (g + eﬂ =(—a sin 6, b cos 0).]

(a) Find the envelope of the ellipses having the axes of co-ordinates as principal axes
and the semi-axes @ and b connected by the relation ab = ¢2.

(b) Find the envelope of a system of concentric and co-axial ellipses of constant area.
[Hint. Area of the ellipse = nab.]

Find the envelope of the ellipses having the co-ordinate axes as principal axes and sum
of their semi-axes is constant.

[Hint. a + b =c.]
Find the envelope of the family of ellipses such that a® + b2 = c.
OR

Find the envelope of the ellipses having the axes of co-ordinates as principal axes and
the sum of the squares of their semi-axes constant.

Find the envelope of the straight lines drawn through the extremities of and at right
angles to the radii vectors of the curve r = a(l + cos 0).

Show that the envelope of the family of curves AA® + 3BAZ + 3CA+ D =0 where A isthe
parameter, and A, B, C, D are functions of x and y is (BC — AD)2 = 4(BD - C?) (AC - B?).

Show that the radius of curvature of the envelope of the line

xcos o+ ysin o= f(o) is flo) + f (o).

Answers
ay2 + x(x2 + y2) =0 3. a2x2 + b2y2 — (x2 + y2)2
4(a?x® + b2y?) = (a2 + y2)? 7. (a) 2xy = ¢ (b) xy = k where k is a constant
X203 4 4208 = (203 9. x4y= Je

r=_2a cos 0.



GEOMETRICAL RELATION BETWEEN A FAMILY OF
CURVES AND ITS EVOLUTE

To show that in general, the envelope of a family of curves, touches each member
of the family.
Let the family of curves be given by the equation
Fx,y,) =0 ..(D
where o 1s the parameter.
We know that equation of its envelope is found by eliminating the parameter o

between (1) and oF =0 (2
oo

On solving (1) and (2) as simultaneous equations for x and y in terms of o,

Let X :f(“)} e
y=0(a)

be the parametric equations of the envelope, o being the parameter.
We know that slope of the tangent to envelope (3) is

dy _dy/do _ ¢'(a)

dx dx/do (o)
Of course, the equations (3) will satisfy equation (1) for every value of o.
Differentiating (1) w.r.t. o, regarding x, y as functions of o, we get
OF dv OF dy OF
ox da 9y da 9o - (5)
. JF .
Putting o 0 from eqn. (2) in eqn. (5), we have
¢’(@) _ oF /JF
—f( )+ —cb( )=0 or o o/ ay ..(6)
- oF
Now, R.H.S. of (6) i.e., gic? (: %) is the slope of the tangent at an ordinary
JF X
dy

point (x, y) of the curve ‘o of the family (1), where as L.H.S. of (6) is the slope of
tangent at the same point to the envelope (i17) [By eqn. (4)]. These slopes being equal,
the envelope and curve ‘<<’ of family have the same tangent at the common point, and
hence they touch each other.

Note. If at any common point of envelope and the curve ;

F oF . .
aa F _ =0, the above argument fails, therefore, the envelope may not touch the curve at its
X
oF oF
singular points (points where both =% and — vanish simultaneously).
X y
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Calculus—I

EVOLUTE AS ENVELOPE OF NORMALS

To prove that the evolute of a curve is
NOTES the envelope of its normals.

Let PT and QT’ be tangents to the
curve AB, at two neighbouring points P and
Q, and let the normals at P and Q intersect
in R, then from figure, it is clear that ZPRQ
= dy.

[+ Angle between two tangents
= Angle between their normals]

Let s be length of arc AP and s + 8s, be
length of arc AQ, so that arc PQ = 3s. O

Let chord PQ = d¢ and ZPQR = a.

Applying Sine formula to the triangle PQR, we have

PR _ chordPQ PR _ &
sin /PQR sin 2 PRQ " sina  sindy
PR = sin o — - S 8 _dy

no.—.—.—
n oy ds Oy sin dy
Now Let Q — P along the curve, then chord PQ becomes tangent at P and normal
QR becomes PR and hence o — ©/2
Lt PR=sin~.1.p.1
—P 2

[ S —s1and Sy —s1and Lt;—s =p, Radius of curvature]
U

S sin dy
= p = PC where c is the centre of curvature.
Corresponding to point P of the curve.
Thus the limiting position of R is the point C (D

We know by definition of evolute of a curve that locus of C, for different positions
of P on the curve is the evolute of the curve. But C, also being the ultimate point of
intersection of any two consecutive normals, its locus is the envelope of the normals to
the curve. (By Def. of Envelope). Hence evolute of a curve is the envelope of its normals.

Note. The above theorem gives us another “definition of the evolute of a curve, as the
envelope of its normals,” and thereby suggests an alternative method of finding the evolute of a
curve as the envelope of its normals.

SOLVED EXAMPLES

Example. Find the evolute of the parabola y® = lx regarding it as the envelope of
ils normals.

Sol. Equation of the parabola is y% = Ix (D)
Comparing with y2 = 4ax, we have

da =1 a=

|~

178  Self-Instructional Material



We know that equation of the normal at the point (at?, 2at) to the parabola
g _ )
y* = 4ax is

tx +y = 2at + at?®

1, 1
Putting azé,equation of normal is tx+y:§t+zt3
I 3 (1
or —t°+|=—x(t-y=0 (2
1 (2 x) y 2)

We know by Art. 7, that evolute of parabola (1) is the envelope of normals (2) to
parabola (1).

Differentiating both sides of eqn. (2) partially w.r.t. (

3 l
é.3t2+(é—x):0 or thZ:x—5
2420l o201 (3
3l 2 3l
Let us eliminate ¢ from eqns. (2) and (3)
[ 5 1
t|=t+——x|=
From eqn. (2) [4 +2 x} y

2
2 —
Squaring both sides ¢2 {M} 2

; _
Putting the value of ¢? from (3),

9 2
(2x—l)+2l—4x}
2

P

3 16 -7
2x -1\ (4x -2+ 61 -12x)*
or ( 24 ) 9 -
or (2x = 1) (— 8x + 41)2 = 24 x 9y?
or 16(2x — 1) (2x — 1)2 = 216y?
Dividing by 8, 2(2x — 1) = 27y?

which is the required equation of envelope of normals (2) to parabola (1) or evolute
of parabola (1).

EXERCISE D

1. Define envelope. Show that the evolute of a curve is the envelope of its normals.
[Hint. It is Art. 7.]

2 2
2. Find the evolute of the ellipse x_z + y—z =1 regarding it as envelope of normals.
a® b

. . ) ) . oax by 2 42
[Hint. Equation of normal to the ellipse at (a cos 6, b sin 0) is -——=a"-b"
cos® smn0

2

2
3. Find the equation of any normal to the hyperbola x_z - y—z =1. Hence find its evolute.
a
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Prove that the equation of the normal to curve x2?+ y23=a?3 may be written in
the form x sin ¢ —y cos ¢ + @ cos 2¢ = 0, and hence deduce the equation of its evolute.

2
Y

2
From any point on the ellipse x_2 +25=1, perpendiculars are drawn to the axes. Show
b

that the line joining the feet of the perpendiculars always touches the curve

x 2/3 2/3
(g
a b

[Hint. Use the result of Art. 6.]

Answers
(@)23 + (by)?® = (a2 — b?)2/3
ax cos 0 + by cot 0 = a? + b?, (ax)?? - (by)?? = (@® + b»)??

(x + y)2/3 + (x _ y)2/3 =9 0,2/3.



Curvature

10. CURVATURE

NOTES

STRUCTURE

Introduction

Definition

Curvature of Circle

Radius of Curvature for Cartesian Equation
Convention of Signs

Note on Parabola y? = 4ax
2 2
Note on Ellipse x_z + Z—z =1
a

Let us Find p for Curve (1) using Equations (2)

Radius of Curvature for Polar Equations
Radius of Curvature for Pedal Equations [To provep=r Z—rJ

Radius of Curvature for Tangential Polar Equations p = f(y)

[romoeo=rZ)
To prove p=r —
dp

Radius of Curvature at the Origin
Centre of Curvature, Circle of Curvature and Evolute

Chord of Curvature

LEARNING OBJECTIVES

After going through this unit you will be able to:

Let us Find p for Curve (1) using Equations (2)
Radius of Curvature for Polar Equations

Radius of Curvature at the Origin

Centre of Curvature, Circle of Curvature and Evolute
Chord of Curvature
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INTRODUCTION

In the adjoining figure, curve PQ bends more B
NOTES sharply than the curve AB. The measure of the sharpness Q
of the bending of a curve at a particular point is called
curvature of the curve at the point. In this chapter, we
shall find mathematical expressions for the curvature of
acurve at a given point which will give a definite numerical
measure of bending of the curve at that point.

DEFINITIONS

Let P, Q be two neighbouring points on a curve
AB. Let arc AP = s, arc AQ = s + 3s, so that arc PQ = s,
Abeing a fixed point on the curve, from which arcs are
measured. Let the tangents to the curve at points P
and Q make angles y and y + 8y respectively with
a fixed line say x-axis. Then

() the angle dy through which the tangent turns
as its point of contact travels along the arc PQ is called
the total bending or total curvature of arc PQ ;

(1) the ratio 8_\u s called the mean or average

s
curvature of arc PQ ;

@tir) the limiting value of the mean curvature when @ — P is called the curvature
of the curve at the point P. Thus, the curvature (k) at point
b B g, vy
Q—P ds 8s— 0 Os ds
@tv) the reciprocal of the curvature of the curve at P, provided this curvature is
not zero, is called the radius of curvature of the curve at P. This is usually denoted
by p. Thus,

and

1
P~k dy’

CURVATURE OF CIRCLE

To show that the curvature of a circle is constant and equal to the reciprocal of
its radius.

Consider any circle with centre C and radius r.
Let A, the lowest point of the circle be taken as the (fixed point) origin and
tangent at A as x-axis.

Let P be any point on the circle such that arc AP = s and tangent at P make an
angle y with x-axis.
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ZACP=vy [ Anglebetween two lines Y4
= Angle between their
perpendiculars]
s=ry [ From trigonometry
[ =r0 for a circle]
C
Differentiati by, 2o v P
erentiating w.r.t. y, dy r s/,

v
S

>
—
b 4

1
Curvature = -
”

1.e., curvature at every point of the circle is reciprocal of its radius and hence is constant.

Note 1. = Curvature at any point of the circle = —
r
As r increases, curvature decreases
ie., Curvature becomes smaller and smaller as the radius of circle becomes larger and larger.

2. v Curvature = —
r

Radius of curvature = r = Radius of circle.

Remark. Conversely, if curvature of a curve is constant ;

d 1 1
i.e., oV _Z (say) .. dy=-—ds
ds r r
. . 1
Integrating both sides, y=—3s or s=ry
r

The curve is a circle.

“The circle is the only curve of constant curvature”.

Let us find the radius of curvature at the point (s, ) on the curve s = a log (tan
+ sec ) + a lan y sec .

ds 1
- _q— 2
p= dy _atantu+sec1u (sec”® y + sec y tan y)

+ a(sec y sec? y + tan y sec y tan )

=a sec y + a sec y (sec? y + tan? )

=asecy. [1+ tan? y + sec? y] = 2a sec® .
The relation between the length of the arc s of a curve measured from a

given fixed point on the curve and the angle y between the tangents at its extremities
is called the instrinsic equation of the curve.

. d . . .
The expression d—s for radius of curvature is suitable only for those curves
i\

whose intrinsic equations are given. We now proceed to find formulae for radius of
curvature when equations of curves are given in other forms.

In this chapter, we shall need few results of chapter on “derivatives of arcs.”
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Calculus—I All these results can be obtained from the following figures :

ds dy ds rdo
NOTES v s
dx dr
Fig. ) Fig. (ir)
dx . dy dy
= = =
cos Y 75’ sin Y 75’ an Y I

—r, sin ¢ = r@, tan ¢ = r—.

Agai =
s cos ¢ ds ds dr

RADIUS OF CURVATURE FOR CARTESIAN EQUATION

(1) When the equation of the curve is given in the explicit form y = f(x).
) d

We know that slope of the tangent at any point = tan y = d_y

x

Differentiating both sides w.r.t. s,

sec \UE— ds E
2. 1 d (dy) dx
sect .- = — | 2| ==
or v P dx\dx)ds
1 2
or sec2w‘62d7gcosw
. dx
.~ From Fig. (i) of Art. 4, cos y=—
s
sec? _ sec? v 1+ tan? I|J)3/2
- 2. g2 2
sy ey L3 ey
dx dx dx
a2 3/2
{IJF(di) :| (1+y 2)3/2
i.e., p= > = 1 e
dy Ya
dx?

CONVENTION OF SIGNS

The positive root is taken in numerator of (1), therefore radius of curvature, p,
will be positive when y, is positive (i.e., when curve is concave upwards) and negative,
when y, is negative (i.e., when curve is concave downwards). In practice numerical
value of p is taken. Since at a point of inflexion y, is zero therefore curvature of a curve
at a point of inflexion is zero.
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Cor. When equation of curve is given in the form x = f(y), then by interchanging Curvature
x and y, we get

973/2
dx
1+ —
[ (dy} ] NOTES
T ax
dy?
. dy
[Hint for proof. -- tan y = ——
dx

X
cot y = ' Differentiate w.r.t. s.]

(11) When the equation of curve is given in parametric form.

Let x = f(t), y = 0(t), be the parametric equations of the curve, t being the
parameter.

Then = =
de dt/ dt «x

where dashes denote differentiations w.r.t. .

2 d [y’ d(y’) dt
o gea)a)s
dx dx \ x dt\x’) dx
_x/y//_y/.x// i_x/.y//_y/x//
(x")? Ea (x")?

dzy
2

Substituting these values of dy and

in formula (1) and simplifying, we
x dx

get
(X/Z + y/2 )3/2
X/y// _ y/x// °
@v) When x and y are given as function of the length of arc s, measured from a
fixed point on the curuve.

Let the curve be given by the equations x = f(s) and y = ¢(s), where s denotes the
length of arc measured from a fixed point on the curve.

We know [from Fig. (i) of Art. 4] that

cos |y = % @), and sin g = % ... @)
2
Differentiating (1) w.r.t. s, we have — sin y d_\u _dx ... (1)
ds  ds?
_dy 1 d% o of i
or ds ' p - qa? [ of ()]
__dy /d’x
ds/ ds?’
2
Again differentiating (17) w.r.t. s, we get cos \ud—w -4y ...@v)
ds  ds®
de 1 d%
& -4 - of @
or ds' o ds [ of (1)]
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_dx /d%
P ds/ ds?’

Squaring and adding (i17) and (iv), we get

2 2 2 2
dez - 9 d’x d’y 1 d?x d%y
—_— S + Ccos = | — +| —= or —5 = + .
( as) Y VI ds> p? | ds? ds®

SOLVED EXAMPLES

Example 1. Prove that the radius of curvature for the catenary y = ¢ cosh x/c is

equal to the portion of the normal intercepted between the curve and the x-axis and that
il varies as the square of the ordinate.

Sol. Equation of the curveis y = ¢ COSh% (D

d .
Diff. (1) w.r.t. x y, = csinh X x 1 ‘ ~+ —(cosh ) =sinh 6
' ! c ¢ do

¥, = sinh X

c

1

1
Again diff. w.r.t. x, y, = cosh Y%= =Zcosh®

c c c c

) x 3/2
1+sinh® =
p:(1+y12)3/2 _( C)

1
Y2 —coshf
c c

3/2
2 X
(COSh CJ ‘ -+ cosh? 0 —sinh? =1

1eosh ® cosh? 6=1+sinh® 0

c c

3
_ ceosh” e o oen? X - (2)
cosh x/c ¢

Now portion of the normal intercepted between the curve and the x-axis.

= Length of normal = y /1 + y12

= ccosh=_[1+sinh?Z =ccosh =.cosh= = ¢ cosh? = (3
c c c c c

From (2) and (3), we have p = Length of Normal

. p
Again——+ - -~ W
& (Ordinate)? y2 ¢? cosh? x/c

p varies as y? i.e., as square of the ordinate.

P ccosh®?x/c 1
— = constant.
c

Remark. If the equation of the curve is given to be
_ € xfc - x/c o
y= 2 (¥ +e ), we should write it as
0

x/c - x/c e(-) +e
y=¢ (—e +2e ] = ¢ cosh x v coshf=———
c



Example 2. In the cycloid x =a (0 + sin 0) ; y =a(l — cos 0), prove that

p =4a cos 56.

Sol. Here x=a(©+sin0), y=a (1 --cos 0)
X¥=a(l+cosB),y =asinb
and X"=—asinb, y”=acos0
3/2
(x'2 + y'2)32 ag{(1+ cos 0)% + sin? 6}

x'y"=y'x”  a®(1+cos0)cos0+a’sin0.sin 0

a® (1+ cos? 0+ 2 cos 0 +sin? 0)%2 a1+ 1+ 2 cos 0)%2

a?® (cos 0 + cos” B + sin? 6) - (cos6+1)
3/2 3/2

- a(2(-1k 2 cosg)) =a.2%? —(1(-1’_ cos 9)9) =a. 2% (1+ cos 6)1/2
+ Ccos + Cos
=aqa.2 (2cos? %6)1/2 = 4a cos 16.

(1+ y12)3/2 . ‘

Remark. We can also use the formula p = for parametric equations.
Yo

NOTE ON PARABOLA y? = 4ax

The shape of the parabola y2 = 4ax is as
shown in the adjoining figure. Y

0(0, 0) 1s the VERTEX of this parabola.
x-axis is the AXIS of this parabola.

y2 =4ax

S(a, 0)
y-axis is the tangent at the vertex to this Focus
parabola.

®)

» X-axis

Directrix
Vertex

For the parabola y? = 4ax ; 4a, the coefficient
of x in this equation is called length of Latus
Rectum of the parabola.

The point (a, 0) on the axis of parabola is called Focus of the parabola.
The line x = — a 1s DIRECTRIX of the parabola.
Any chord of the parabola passing through the focus is called a focal chord.
Any point (x, y) on the parabola y? = 4ax is (at?, 2at).
[~ (at?, 2at) satisfies the equation of parabola]

This point (at?, 2at) is briefly written as point ¢ on the parabola. ¢ is also called
“parameter”.

Also x = at?, y = 2at are called Parametric Equations of the parabola
2
y* = 4ax.

SOLVED EXAMPLES

Example 3. Show that for the parabola y? = 4ax, p? varies as (SP)? where p is the
radius of curvature at any point P of the parabola and S is the focus of the parabola.
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Calculus—1 Sol. Equation of the parabola is y? = 4ax.
Any point P(x, y) on the parabola is (at?, 2at)
e, parametric equations of the parabola are
NOTES x = at?, y=2at
: X' = 2at, y =2a
x” = 2a, y'=0

B (x/Z +y/2)3/2 B (4a2t2 +4a2)3/2

x/y// _ y/ x// O _ 4a2
213/2 (,2 3/2
or 0=— (4a”) (t2 +D dad)2 (1 + 12)°2
4a
or p = 2a(1 + t?)*2 (Numerically)

Also SP (where S(a, 0) is focus and P is (at?, 2at)

= \/(at2 - a)® +(2at - 0)° ‘ \/(xg -2+ (yp - y1)”

= \/a2t4 +a® - 2a%® + 4a’*t?

- \/a2t4 +a%+2a%% = x/(atQ +a)? =a*ta=a(l+ 1)

p? 2a(1+t2)%212 4 1+¢2)?° 4 Constant
= = = — = Constant.
(SP)? [a(1+¢)? ad1+t%)? «a
p? varies as (SP)°.
xZ yZ
NOTE ON ELLIPSE =, +¥_ =1
a b
22 y? Ya
The shape of the ellipse —2+b—2 = 11s as
shown in the adjoining figure. “ B| (0, b)
C(0, 0) 1s called CENTRE of the ellipse. b
x-axis is called MAJOR AXIS of the ellipse ;(’ —a a > X
and length of major axis is 2a. A'\(-a,0) C|(0,0) A(a, 0)
y-axis is called MINOR AXIS of the ellipse -b
and length of minor-axis is 2b. B[ (0, —b)
Eccentricity e of the ellipse is given by
b2 = a2(1 - e?). Yy
X2 2
Any point (v, y) of the ellipse — + =) =11s (a cos 0, b sin 0)
a

[~ (acos 0, b sin 0) satisfies the equation of the ellipse]
The point (a cos 0, b sin 0) is briefly written as point 6 on the ellipse.
0 is called Parameter or Eccentric Angle of the point.

Conjugate Diameters of an Ellipse

Two diameters of an ellipse are said to be conjugate if each bisects chords
parallel to the other.
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If CP and CD are two semi-conjugate diameters of an ellipse and P is point 0

t.e., Pis (acos 0, b sin 0) ; then the point D is g +01.e,Dis [a cos (g + 9), b sin (g + GH

SOLVED EXAMPLES
Example 4. If CP, CD are a pair of semi-conjugate diameters of an ellipse of
3
semi-axes of lengths a and b, prove that the radius of curvature at P = ab where Cis

the centre of the ellipse.

2 2

Sol. Equation of the ellipse is x—2 + Z—z =1.
a
Any point P(x, ¥) on the ellipse is (a cos 0, b sin 0) i.e., parametric equations of

the ellipse are

X=acos 6 y=>bsin 0
X'=—asin 0 y' =bcos 0
xX"=—acos 0 y”=—bsin 0
B (x/Z +y/2 )3/2 B (az sinz 6+bz COSZ 6)3/2
x'y"—y'x” ab sin? 0 + ab cos? 0
2 . 2 2 .2 n\3/2
or o= (a” sin 6+ll)) cos” 0) (1)
a

CP and CD are semi-conjugate diameters of the ellipse and point P is
(a cos 0, b sin 0), therefore

Dis [a cos (E + GJ,b sin (E + eﬂ
2 2

or Dis (—asin 0, b cos 0)
CD where C(0, 0) is centre of the ellipse

= \/(—asinG—O)2 +(Bcos0-0)2 = \/a2 sin? 0+ b2 cos? 0

3
Putting this value of \/a2 sin? 0+ b2 cos2 0 = CD in (1), we have p = C]?) .
a
Example 5. Show that the radius of curvature at any point of the curve
x%/3 +y2/3 = a2/3 is equal to three times the length of the perpendicular from the origin

on the tangent.

Sol. Equation of the curve is x%/2 + y2/3 = g2/ (D
28 2/3

Dividing by a2 ; (—J + (ZJ =1
a a

« (@7

Comparing with cos?0 + sin?0 = 1, we have

£\V3 13
(—) =cos® and (l) =sin 0
a

a
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Cubing both equations X —cos?0 and Y —sin?0
a a
x=acos’® and y=asin®0 (2

Equations (2) are parametric equations of curve (1).

(These equations (2) of curve (1) should be preferred in this chapter)
Let us find p for curve (1) using Equations (2)

Differentiating eqns. (2) w.r.t. 0,

d. ) d, :
d—g =—3a cos?0 sin O andd—g = 3a sin?0 cos O
dy \
dy do 3asin“6 cos O sin 6
= = = 2 = = — =—tan 0
N7 e dx  _3qcos? 0sin 0 cos 0
do
Again differentiating w.r.t. x,
dzy 9 dO
=—5 =—sec’0 —
Y dx? dx
-1 1 ~ 1
c0s?0 —3acos?0sin® 3acos* 0sin®
213/2
We know that, p= A+ )77
Yo
Putting values of y, and y,,
1+tan? 0)%2 . 3/2
p= ( 1 ) = 3a cos* 0 sm@(sec2 6)
(3a cos* 0 sin GJ
= 3a cos? 0 sin 0 sec® 8 = 3a cos? O sin O 3
cos” O
p=3acos 0sin 6 ..(3)

Now let us find the equation of the tangent at any point (x, y) i.e., (@ cos® 0, @ sin?

0) (using equations (2) to curve (1)).

We know that slope of the tangent at any point

sin 0

wn=2= tano
X,y)=——=—tan 0 =—
Y dx cos 0

Equation of the tangent at any point (a cos® 0, a sin® 0)

sin 6

0s 0

Cross-multiplying y cos 6 —a sin®0 cos 6 = — x sin 0 + a cos® 0 sin 0

y—asin®0=— (x — a cos® 0) ly—y,=m (x—x,)

xsin O+ ycos O —asin®0cosO—acos®Osin®=0
xsin 0+ y cos O —a sin O cos O (sin? 0 + cos? 0) =0
xsmbO+ycosO—asmbcos6=0 ...(4)
p = length of L from origin (0, 0) on tangent (4)

|0+0—asin6cosO| | ax; +by; +c¢|
= [[2 12
\/s,in2 0 +cos® 0 a”+b

= qa sin 0 cos 0 ...(5)



From (3) and (5), we have p = 3p Curvature

i.e., radius of curvature at any point of the curve x2® + y#° = ¢2” is equal to three times
the length of the perpendicular from the origin on the tangent.

NOTES

SOLVED EXAMPLES

Example 6. Show that the radius of curvature of the curve \/x + \/_ = Ja is

.. . 1 1
minimum al the point 2 a, 2 al.

Sol. Equation of the curve is \/x +f =Ja (D
Diff. both sides of Eqn. (1) w.r.t. x,
1oz, 1 apdy _ 11ldy 11
g% +2y I 0 or 2ﬁdx 2 Ix
dy _ 2y _ Ay @
I e I

Again diff. (2) w.r.t. x,

1 pdy o1 —1/2}
_[&231 dx \/;'Zx

d?y _
dx? X
[ﬁ(_yJ_ﬁ]
11y L Jx ) Vx
- _= [By )]
2 X
_— *) _1fdeedy) 1 da By (] ...3)
2 3/2
1+(dyj
Putting th lues of 2 ana & - o h
utting ese values o dx an g np— dzy , We have

(1+y

3/2

J (x+9)” 2xx 2

- \/% BT ic/;x or PZﬁ(ery)i’”2 (4
Zx\/;

To find minimum value of p

2
Diff. (4) w.r.t. x, do _ 2 3 T (1+%)

dx o 2
dp 3 /2 dy
or & Ja (x+y) (1+5J ..(®)
Again diff. (5) w.r.t. x,
dzp 32 d ~12 ( dyj ( dyj
_ 2 D1+ L
=T {( + ) dx (x +y) + I + T ...(6)
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=

dp 3 1/2( dy)
— = —_— 1+—==| =
Put ax 0 Ja (x+y) + I 0
3
But — =0 also x+y#0 By (1
u \/E y [ Y( )]
dy dy
1 _—= _— =
+dx 0 or dx 1
From (2), —ﬂz—l or Jy =Jx y=x )

Let us solve Eqns. (1) and (7) for x and y.
Putting y = x from (7) in (1), Vx +Jx = Ja or

N I

¥=7
From (7) y

2Jx =Ja

T

NS

X

o« d® 1 Ja 14 [4 —
Atx—y—4,fr0m(3), 12 Za\/g_?a aﬁ_
4°V4
. a a dy d?y 4 .
Putting x:Z’y:Z’ a:—l,wzgln@%

L . a a
p is minimum at the point (Z, Z)

EXERCISE A
Find the radius of curvature at the point (s, y) on the following curves :
(1) s=alog tan (g + %) (1) s = 4a sin y [eycloid].

Find the radius of curvature at the given point of the following curves :

(1) Rectangular hyperbola xy = ¢? at the point (x, ).

2
{Hint. From the equation of the curve y = £
x

@111) & + ﬁ =1 at the point (%,%).

Find the radius of curvature at any point of the curve x = a (cos 6 + 6 sin 0), y = a (sin 0
— 0 cos 0).

Find the radius of curvature of the curve y = e*, at the point where it crosses the y-axis.

(ii)y:4sinx—sin2xatx=g.

Find the radius of curvature at the origin of the two branches of the curve given by
x=1-13y=1-1°
[Hint. At the origin x=0,y=0

1-#=0andi-t*=0. Common values of ¢ on solving are + 1.]



2
6. Prove that the radius of curvature of the curve y = %(ex/“ + e‘x/“) is y_.
a
0 -0
+
[Hint. We know that cosh 6 = %,

. X
Equation of the curve becomes y = a cosh —. Now see example 1.]
a

,12.
a

7. For the curve y =a e*/%, prove that p = a sec? 0 cosec 0, where 0 = tan

ax 9 2/3 2 x 2
8. For the curve y = ———, prove that (_p) = (l) + (_J )
a+x a x y

9. Find the radius of curvature for the curve \/E - \/% =1 at the points where it touches
a

the co-ordinate axes.

|:Hint. The point where the curve touches x-axis ; Zx_y = 0. The point where the curve

o dx
touches y-axis, — =0.
dy

10. Show that for the curve x =a cos 6 (1 + sin ) and y = @ sin 0 (1 + cos 0), the radius of

. . . . T
curvature is a, at the point for which the value of the parameter 6 is — T

3a 3
11. Prove that for the curve x* + y* = 3axy, the radius of curvature at the point (7(1, ?a) is

3a\/§

numerically equal to .
y eq 16

12. Show that the radius of curvature at the point (- 2a, 2a) on the curve x%y = a(x® + y?)

is 2a.

138. Find the points on the parabola y? = 8x at which the radius of curvature is 7 %

14. If p, and p, be the radii of curvature at the extremities of a focal chord of a parabola

y% = 4ax, prove that (p,)~ %+ (p,)~ %% = (2a)~ 2
[Hint.
then 1,1,=—1]

Answers
1. () asecy (@) 4a cos v
(x* + )32 .. 55 o 1
2. _— -
O] PN @) 1 (i) NG}
2 2
3. ab 4.8 5.242 9 2%,2‘;
a

13. £,3):4,-3

If , and [, are the parameters of the two extremities of a focal chord of a parabola,

Curvature

NOTES

RADIUS OF CURVATURE FOR POLAR EQUATIONS

To find the radius of curvature for the curve r = f(0) or f(r, 0) =0

Let the tangent at any point P(r, 6) to curve make an angle y with the initial

line OX.
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Then from the figure, we have
y=6+¢
dy _d6+@_d6 do do

ds ds ds ds de’ ds
1
— :@[1+@}
p ds do
. p
_smo [1+ﬂ} (D
r do N
[ From Fig. (ii) of Art. 4,sinq):r@ @:M}
S ds r
. S _.do _r 1
Again from Fig. (i1) Art. 4, tan 0 =r . @ dr n ..(2)
do
., do
To find —
o fin 78

Differentiating (2) w.r.t. 0,

2
ec26dq)_r1.r1—rr2 -
S 0 2 = 2
51 51
2 2
@: oI, oI T ‘ tan(I):L
do r’sec’ ¢ r? r?+r? r
1 2 1
n
r

r
Also tan ¢ = — gives sin ¢ =

n Jre+r?

do

Substituting these values of 20 and sin ¢ in (1), we get

2
1_ 1 1+r1 -7y
P \/r2+r12 r’ +r?
1 B r? -i—2r12 -1y

o= 2 273/2
P (r“+n )3/

(I'2 + I'12 )3/2

. (3)

r? + 21‘12 —ITy
Cor. If equation of a curve is given in the form u = f(0), where

1 1 1 du
= , = —, th h = -
" 7 ” en we have 1, 7 do

Lo 1 dw 2 (d_]
2 u? de® u® \de

Substituting these values of r, and r, in (3), we get




- (u? +u,2)¥?
or p= 5 -—3
3 d“u u’(u+uy)
u’lu+——
do
2
where u, = du and wu,= d_ch
do do
7. Radius of Curvature for Pedal Equations (To provep=r %J
Y
Let the pedal equation of the curve be p = f(r).
From the figure (refer to figure of article 9.6), we have
dy do do 1 do do
=0+ — =—+— le, - =4+
v ¢ ds ds ds ¢ p ds ds
But we know that p = r sin ¢
Differentiating this w.r.t. r, we have
@Zsinq)‘ 1+rcos¢.ﬂ=rn@+rn£@
dr dr ds ds dr
[ sinq):r.@,cosq):ﬂ}
ds
[de d(l)} 1
=r|—+t—_=r.—
ds ds p
dp _ 1 . __r _, 4
or g—r.g S p—dp/dr—r'dp'

()]

[ of relation (7)]

Curvature

NOTES

ds

RADIUS OF CURVATURE FOR TANGENTIAL POLAR

d?p

To provep=p +
d\uz

EQUATIONS p = f(v)

A relation between perpendicular p from the Ya
origin on any tangent to a curve and angle y which
this tangent makes with x-axis, is called the

tangential polar equation of the curve. P (x, )

Let p be length of the perpendicular OL
drawn from the origin on the tangent to curve at L

the point P(x, y), then OL makes an angle —g P/ r/2

with the positive direction of x-axis. V-

n|a

Equation of the tangent PT is X 0O T
o . o Y’
=X cos ——|+Ysin -—
P ("’ 2) ("’ 2)

[Normal form x cos o0 + y sin o = p]

or p=Xsiny—Y cos y
where X, Y are Cartesian co-ordinates of any point on this tangent.

3 4
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As point P(x, y) lies on this tangent

. p=xsiny—ycos Yy ..@)
Differentiating both sides of (7)) w.r.t. y, we get
dp ) dx ) dy
w =xcosw+smw‘w +ysm1u—cosww
dx ds dy ds

=xcostu+ysin1u+sin1u‘g.@—cosw‘d—.w
S

=xcosytysiny+sinyp.cosy—cos\y.psiny

[ ﬂzcos w,ﬂzsin w}
ds ds
=xcosy+ysiny
Differentiating again w.r.t. y, we get
d*p
dy?

. dx ) dy
=—xsm1u+cosw‘w+ycosw+s1nw‘w

x ds o dy ds
ar 20 ny. 2. =2
ds dy MV ds Ty
=(—xsiny+ycosy)tcosy.cosy.p+siny.siny.p

=—xsin\y+ycos \y+cos .

=—p + pleos® y + sin” y] [ of relation ()]

dzp

dy? )

Hence p=p+

SOLVED EXAMPLES

Example 7. Find the radius of curvature for curve r* =a’ cos nb.

Sol. First Method. Taking logarithms of both sides, we have
n log r = n log a + log cos no

Now differentiating, A _o+ (— n sin no)
r do cos nb
=—n tan no ..@)
RS r,=-—rtan nd
Differentiating again,
r,=—rn.sec?nd—r, . tan nd
=—rn sec? nd + r tan? no ... (i)
. (2 + )32

r?+ 21"12 —rn,

2 9 2 3/2
_ (r® + r* tan” no) [ of (I) and (i1)]

r? +2r? tan® n0 + r’nsec? n0 - r2 tan® no

r® sec® no r.secnb r 1
_(n+1)rzsec2n6_ n+l  n+1 cosnd
n n
r a r
= = — " —-=cos no, from eq. of curve
r' (n+Dr" a
n+1) —
arL



Alternative Method. We first change of polar equation of the curve into the

pedal one and find the value of r. %

74
.. dr
As found in (i) above, we have 26 =—rtan no
do r i
tan 0= r— = —5—-=—cotnb =tan | —+nb
OTra T dr (2 ]
do
. 1
r.e., 0= 2 T+ no ... (1)
) (1
Now p=rsin ¢ =rsin 5 T+ no [+ of (i17)]
rn
or p=rcosno=r.— [From the equation of the
a
curve]
rh +1
Hence pedal equation is p=—"7F
a
) o dp (m+Dr"
Differentiating, T Y
dr a” a”
p=r

— =T. = .
dp n+Dr* (m+Drm?
Note. The above question may also be put in the following form : Show that for the
curve a'p = r* " 1: p varies inversely as the (n — 1)th power of radius vector.
Remark. To transform polar equation to pedal equation

r

1. Find ¢ from the formula tan ¢ = m

do
2. Put this value of ¢ in p = r sin ¢.
3. Eliminate 0.
Example 8. If p,, p, be the radii of curvature at the extremities of any chord

2
through the pole of the cardioide r=a(1+ cos 0); show that p * +p,*~ 169& .
Sol. Let p, and p, be the radii of curvature at the P,
extremities P, and P, of the chord P,OP, of the curve
r=a(l + cos 0) (D) i 0
Diff. (1) w.r.t. 0, r,=a(0—sin 0) =—asin 6 0 >
Again diff. w.r.t. 6, r,=—acos 6 Pole X
(2 + r,2)%2

We know that =—a—a
re+2r" —rn

[a?(1+ cos0)? +a? sin? 0]%2

a? (1+cos 0)? + 2a2 sin? 6 + a? cos 0 (1 + cos )
]3/2

a® [1+cos? 0+2cos0+sin 0
a? [1+cos?20+2cos0+2sin? 0+ cos 0 + cos? 0]
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al2+2cos01%%  a.2%% (1+ cos )2
[3 + 3 cos 6] 3(1+ cos 0)
~a2¥? (1+cos0)V?

1/2
a.2%? (2 cos? gj

3 3

32 ouz . 0
a2 .2"“ cos 2 4a 0
= = -—cos—.
3 3 2
Let ZX0P, =0, .. ZXOP,=mn+6
4a 0

at P, = —cos — (1
Py 173 D) (1

Changing 6 to + 6 in (1), we have

4a T+0 4a nT 0
p2atP2=?cos B :?COS §+§

4a 0
= ——¢gin— (2
3 sing (2

Squaring and adding (1) and (2), we have

2 2
912 + 922 = —169a (cos2 g+ sin? g) = 169a .

Example 9. Find the radius of curvature at the point (p, r) of the ellipse

L1 1
P> a® b7 a%?
. . 1 1 1 r?
Sol. Equation of curve is — = p + FelasTes
2, 2 272
b
or o —b2+ a2 e, r2:a2+b2—a2
P p
2,2 dr  a2b2
Differentiating w.r.t. p, 2rﬂ - 2a7b LopET o=
dp p3 dp p

Example 10. If ¢ be angle which the radius vector of the curve r = f(0), makes

. r : d . :
with the tangent, prove that B =sin ¢ (1 + d—g), where p is the radius of curvature.

Apply this result to show that p = a/2 for circle r = a cos 6.
Sol. We know that y =6+ ¢ [Refer to Fig. of Art. 6]
Differentiating w.r.t. s, we have

dy_do do_do dods o, do]

ds ds ds ds dods ds do
1 sing¢ do i d0
or p = - |:1 + %:| |: . Sin (1) r —ds:|
. do .
— _ 14+ 2% /
s1n¢[ + d6:| ()]
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10.

Also equation of circle is r = a cos 0

Differentiating, r= % =—asin 0
tan ¢ = AL —aco.se =—cot 0= tan(£+9)
dr rn —asin® 2
do _

T
(0] 2+ an 70

rcosec 0 _ acos6cosec (3 m+6)

But from (), = =
© P~ 1+ do/do) 1+1
=2 0s0.5ec = L,
2 2
EXERCISE B
Show that for the curve r = a(l + cos 0), the radius of curvature
2
p=4—0tcos9 and p_:8_a
3 2 r 9

Show that the radius of the curvature at any point of the cardioid

.2 2
r=a(l —cos 0) is g\/2ar and prove that P is constant.
r
If p,, p, be the radii of curvature at the extremities of any chord through the pole of the

2
cardioid r = a(l — cos 6), show that p 2+ p,? = 169(1 .

Find the radius of curvature at any point of the curve r = a cos n6 and show that at the

point where r = a, its value is

1+n%’
Find the radius of curvature of the curve r = a sin nf at the pole.
Find the radius of curvature at any point (r, 0) of the following curves :

@) r™ = a™ sin m06 (11) r2 cos 20 = a?

1[r2 - a2 a .
@i)ye=3"__ " o712 @v) r= aed ot @
a r

2a
(V) — =1+ cos 6.
r
Find the radius of curvature at any point (p, r) on the following curves :

272
. . a’b .
@) p*=ar @) r2=a?2-b>+ 2 @) 2ap? =13 (tv) pa? = rs.

Find the radius of curvature for the curves :

@) p=a(l + sin y) (1) p% = a? cos? y + b® sin? .

Find the radius of curvature to the curve r = a(l + cos 6) at the points where tangent is
parallel to the initial line.

[Hint. Firstly do Q. 1 ; and then use 6 + ¢ = 180°.]

Show that the radius of curvature of the lemniscate r2 = a

V2 .a

tangent is parallel to x-axis is .

3

2 cos 20 at the point where the
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11. Prove that in the curve r? = a? sin 20

(1) The curvature varies as the radius vector.
11) The tangent turns three times as fast as the radius vector.
g

[Hint. Prove that y = 36]

(iir) Also for the same curve find the points at which radii vectors are perpendicular to
the tangents and find the radii of curvature at these points.

Answers
alcos? nd + n? sin? no)®/2 5 na
(1+ n2) cos? no + 2n? sin no )
a™ s .
6. (l) m @) a—z (€22 m (tv) r. cosec o
3/2 272
V) 2"\/2 7. () 2:/— @ir) a 2 (Tir) %VZar
a a p
272
.. a ... a“b 2a
) — 8. (1) a 1l 9. —
v 3 (@) (i) =3 7
11.

(iii) (i a, %J : %

RADIUS OF CURVATURE AT THE ORIGIN

When the curve passes through the origin, the following methods may be used

for finding the radius of curvature at the origin.

(i) Method of direct substitution. Calculate the values of y, and y, at origin,

and then substitute these values direct in the formula,

(1+y12)3/2
pP=—"

Y2
(11) Method of expansion. The above method very often fails or becomes very

labourious. So let us obtain the values of y,(0) and y,(0) by the following method :

Let y = f(x) be the equation of the curve. Since it passes through origin, therefore

f(0) = 0.
By Maclaurin’s Expansion,
’ xz ’” x3 ”r
y=f0)+xf"'O)+ 57 f (O)+;f O+ ......
. ’ xz ” x3 ”r
e, y=xf(0)+2—!f(0)+;f Oy + ...
. B 1 o 1 3
i.e., y_px+2—!qx +§rx + e (1)
where p=1"0)=y,00);q=/"0) =y,(0) etc.
. _ 29x  3rx?
Diff. (1) w.r.t. x, ¥, = p+2—!+ g T
Again diff. w.r.t. x, y, = 2q , brx +
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At the origin y, =p (Putting x =01n y,)
2q
and Vo= 50 =
. . (1+ 2)3/2
Putting these values of y, and y, in p = ;;—1, we have
2
(1+ p2 )3/2
p=——-
q
Remark. To find values of p and q.
o gx®  rx® . .
Substituting the value of y = px + or + T e in the equation of the curve

and then equate the coefficients of the like powers of x in the identity thus obtained.
This way we will get the values of p and q.

(111) Newton’s method. (a) If a curve passes through the origin, and axis

of x is the tangent at the origin, then
2
p at the origin= 1t >,
x—0 2y
y—0
(b) If a curve passes through the origin and axis of y is the tangent

there, then radius of curvature at the origin.

2

=Lt 2.

x>0 2x
y—0

(a) Since axis of x is the tangent at the origin, therefore its slope

0 _(dyJ =0
1O =g 00
2

Now ;C— is of the indeterminate form %, asx—0,y—0.

Yy
By Hospital's rule
2
Lt x _ Lt 2% . [Again of form 9, y1(0)=0}
x—>02y  x-502y; x>0y 0
y—0 y—0 y—0
: : @)
= _— = .
ij}% Y2 o ¥2(0)
1+ v 200072 (1+0)%2 1
But p at origin = L+, O _ ) ... (i)

¥2(0) - ¥2(0) - ¥2(0)
2
From () and (1), p (at origin) = Lt x
x—0 Zy
y—0
(b) Proof is similar to part (a) and left as an exercise for the students. (Interchange

the letters x and y in the above proof).

Cor. Curvature at the origin when polar equation of the curve is given.
If the initial line is the tangent at the pole (origin), then

2 2 2
.. 0 r 0
p (at the origin or pole) = Lt LA Lt r cs 9 co‘s = Lt (— : .cos® ej
x—>02y 0650 2rsin® 90 20 sin®6
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= Lt | — = —1,c080—1,when 6 —0
60— 8 20 sin O
r—

dr
= Lt —
NOTES g0 dO

r—0 5~

2
:Lt(lﬂ}
2 do

Remark. The tangents to an algebraic curve at the origin are obtained by equating
the lowest degree terms to zero.
(See chapter on Singular Points Page ??7?)

| Is Hospital Rule

SOLVED EXAMPLES

Example 11. Show that the radii of curvature of the curve y* =

origin are a +/2.
Sol. Equation of the curve is yi(a—x) =x% (a+x) ..@)
i.e., yia—-x)—x2(a+x)=0
Equating to zero the lowest degree terms, we get
a(y*—x?) =0 .. y=xuxare the tangents at origin.
Newton’s Method is not applicable here.

_ 1 o 1 3
Let y—px+2—!qx +§rx +ienns
Substituting this in the equation of the curve, we get
(a—x)(px+%qx2+%rx3+ ...... )2 = x%(a + %)
Equating coefficients of x? and x® on both sides of the above identity, we have
ap’=a ..@) and apqg-p?*=1 ... (i)
From (1), pi=1 or p=t1
When p =1, then (i1) givesag—1=1 or q= 2
a
1+ pH* a4+ 12
p at the origin = =P 7 . Qz a2
q 2/a
And when p =—1, then (i) gives—aq—-1=1 or q=-2/a
. 1+ %2
p at the origin = @+ D7 =—a42.
-2/a

Example 12. Find the radius of curvature at the origin for the curve
x5 — 2x%y + 3xy? — 4y + 5x% — b6xy + Ty? — 8y = 0.
Sol. The curve passes through the origin. Equating to zero the lowest degree
terms, we find y = 0, i.e., x-axis is the tangent at the origin.
2
x
By Newton’s formula p at (0, 0) = Lt —

x—0 2y
y—0
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Dividing the equation of the curve by 2y, we get

2 2
X y? +§xy—2y2 +5x——3x+1y—4 =0
2y 2 2y 2
Taking limits as x and y both tend to zero, we have
2
5LtY —4 = 0, other terms become zero.

x>0 2y
y—0
: - _4
re., op—4=0 or p—5.
EXERCISE 3

1. Find the radius of curvature at the origin for the curve x* + y2 —2x2 + 6y = 0.
2. Find the radius of curvature at the origin for the curves :
@) 2x*+ 3yt + 4x*y + xy —y2 +2x=0
@) 23 + 4x2y + xy2 + 5y3 —x2 - 2xy + y2 + 4x =0
1) 2x* + 4x° + xy? + 6y —3x2 — 2xy + y2 —4x = 0.

. . . 3
3. Show that the radius of curvature at the origin for the curve x* + y® = 3axy is equal to ?a.

[Hint. Divide both sides by 2xy.]
4. Find the radius of curvature at the origin of the following curves :

@) y=6x+5x>+ x> @) y—x=x2+ 2xy + y?
1) a(y? — x2) = x3.
Answers
1. % 2. (1 (17) 2 numerically @111) 2.
1
4. ) 37£{)§ ) ﬁ (iti) 242 a (numerically).

CENTRE OF CURVATURE, CIRCLE OF CURVATURE AND
EVOLUTE

(1) Centre of Curvature for any point P of a curve is the point on the positive
direction of the normal at P (i.e., the direction on the concave side of curve) at a distance
p from it.

Let PD be the normal to the curve at P, and
C be a point on it such that PC = p, then C is the
centre of curvature of the curve at P. Cxvy)

Ya D

(1) Evolute of a Curve. The locus of the Y
centres of curvature of the given curve is called the
Evolute of the curve.

P(xy)

R
@1ti) The circle with its centre at the centre of
curvature C and radius equal to p is called the circle
of curvature of the curve at the point P. \4
Remark. Evidently the circle of curvature touches X~ O T N M
the curve at P and both the curve and the circle of
curvature have the same curvature at this point.

<V
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@@v) To find the co-ordinates of centre of curvature for any point P(x, y) of
curve y = f(x).

Let C(X, Y) be centre of curvature corresponding to any point P(x, y) on the
curve, then PC =p. (above Fig.). Let tangent TP make an angle y with positive direction
of x-axis. Draw PM and CN perpendicular on x-axis, and draw PR perpendicular to
CN. Then

Z/PCN =90° - ZCPR = 90° — (90° — ZRPT) = ZRPT = ZPTX =y
X=ON=OM-NM=OM-RP=x-CPsiny=x—-psiny ...(1)

and Y=NC=NR+RC=MP+RC=y+CPcosy=y+pcosy .. (2
But we know that tan y =y,
. Y1 1 0
sin y = ——=— and cos Yy = —— ®
N1+ y,2 N1+ y,2 x
e " > "
1+
Also = Aty )7 )
Y v
Hence substituting these values in (1) and (2), we get 1
2 1+y,2
X=x- NIV oy IV
Yo Ya

Cor. 1. We have already proved that
X=x-psiny,and Y=y +p cos y.
Since x, v, p, ¥ depend upon s ; therefore the above equations may be treated as
parametric equations of the evolute.

ds
Cor. 2. pzw, sian%andcosw:%
Substituting these values, we get
ds dy dy ds dx dx
= —_—— N — =X - — [=y+—.— =y +—
Xy ds Tay P YEYT gy ds T

co-ordinates of centre of curvature in another form.

Cor. 3. To find the equation of the circle of curvature at a given point of the
curve.

Let (o, B) be the centre of curvature and p be radius of curvature at the given
point. Then equation of circle of curvature at the given point is

(x—a)?+ @ -Pp*=p*

CHORD OF CURVATURE

The length intercepted by the circle of curvature of the Q
L o g DL
curve at P, on a straight line drawn through P in any given 90°
direction is called chord of curvature through P in that o
direction. Thus, if the chord of curvature PQ, makes angle o, ‘
with the normal PCD, then its length PQ is given by P
PQ=PDcosa [~ ZDQP,being a semi-circle is
art. angle]

= 2p cos o Q T

a4
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We now proceed to find the length of chord of curvature in some particular cases.

(i) Cartesian Co-ordinates.

Chords of curvature parallel to the axes.

Let the tangent at P make angle y with x-axis,
then the chord of curvature PA, parallel to x-axis,
makes an angle 90° — y with the normal PCD, and
chord of curvature PB, parallel to y-axis makes angle
y with the normal PCD.

C, = length of the chord of curvature
PA, parallel to x-axis.

= PD cos (90° — )
= 2p sin y
2.+ y12)3/2 Y1
- Yo . 1/1-{- y12
_ 2y, (1+y,®)
- Ya
and Cy = length of the chord of curvature PB, parallel to y-axis
2(1+ y,2)%? 1

=PD cos y =2p cos y = .
Y2 \/1+y12
_2(+y,%)
Ya )

(ii) Polar Co-ordinates

Chord of curvature through the pole and
perpendicular to the radius vector.
PL, the chord of curvature through pole
O, makes angle of 90°— ¢, with PCD, the normal
to the curve at P, and PM the chord of curvature
1 to the radius vector OP, makes angle ¢ with
the normal PCD.
. C, = length of chord of curvature
PL through the pole.
= PD cos (90° — ¢)
= 2p sin ¢

2(r2 + r12 )3/2

2 2 .
re+2r° —rry \/rz +r
2r(r? + rlz)
r?+ 21"12 —rry
and Cp = length of chord of curvature PM 1 to radius vector

r

2.r% + r12)3/2 n 21"1(1"2 + rlz)
=PDcos¢p=2pcosd=— o) TS > =2 o) .
re+2r° —rry \/r +r re+2r" —rn
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Calculus-1 (iii) Pedal Equations

When the pedal equation p = f(r) of the curve is given, then
C, = length of chord of curvature through pole along radius vector.

= PD cos (90° — ¢) = 2p sin ¢ (1)

NOTES
But pzr.ﬂ and sind)z£
dp r
Substituting in (1), we get
dr
CO = zr ﬂ . £ = .
dp r dp
Also from equation p = f(r), we have
p _ [

dp — £ 3 = —
E_f(’), " Slz¢_r 4 1 f(r)  2f()
o roo r)  2f(r
From (1), C,=2p 81n¢_2.r—dp.sm¢ _2r'f’(r)' Ok

Cp = length of chord L to the radius vector

Also
2

2_
=DP cos ¢ = 2pcos¢:2.ri.i
dp r

2 2
sinq):£, cosq)zi
r r
_o. o2
=2.4r"-p dp’
SOLVED EXAMPLES

Example 13. Find the coordinates of the centre of curvature at any point (x, y) of
the parabola y? = 4ax. Also find the equation of the evolute of the parabola.
Sol. Equation of the parabola is y? = 4ax the parametric equations of this parabola

are
x = at?, y = 2at
dx dy
E—Zat E—Za
dy
_dy_(dtJ_Za 1
NT G T (dx)  2ar 1
(%)

Again differentiating w.r.t. x,

Co-ordinates of centre of curvature at any point (x, y) of the parabola are

1

(14 y.2) 1(“#] 1

X=x—y — 2 —at? =222 — g2 4 2042 (1+—2)
Yo t 1 t
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or X = 3at? + 2a .. (1)

1 1
and Y=y+y—(1+y12)=2at—2at3 (1+t—2)
2

= 2at — 2at® — 2at = — 2at® = — 2al® (2
From (1) and (2),

The coordinates of centre of curvature at any point (x, y) = (at?, 2at) of the parabola
are (3at? + 2a, — 2at®).

Note, we know that evolute of a curve is the locus of centres of curvature.
In fact, equations (1) and (2) are parametric equations of the evolute of parabola.
To get cartesian equation of evolute of parabola, let us eliminate ¢ from (1) and (2).

Form (1), 2= X —2a ..(3)
3a
Y

From (2), P=-— (4
2a

Now cubing (3), squaring (4) and equating the two values of (¢, we get

—_ 3 2
(X32“J =Zz or 27aY? = 4(X — 2a)?
a a

Changing X to x and Y to y,
we get 27ay? = 4(x — 2a)°,
which is the equation of the evolute of the parabola.

Example 14. Find the coordinates of the centre of curvature of ellipse

2 2
X

=+ =1orx=acos0,y=>bsin0. Hence show that the equation of its evolute is

(ax)?’3 + (by)?’S = (a2 — b2)?’3.

Sol. Let (X, Y) be the coordinates of the centre of curvature at point ‘0’ of the
given ellipse

Q
®|<<
[\

X=acos 0, y=bsin 0

ﬂz—asinE), ﬂ=bcos€)
do do

_dy /dx _ bcosH b

Y17 g0/ do —asin® :_; cot o

d( b d( b do
and y2:d—(——cot6) :%(——cotﬁ).d—

X a a X

2 1 b
= —cosec’Q. ——— :——200se036
a —asin 0 a

2
) —bcot6(1+bzcot26J
a
X:x—ylwzacose— 3 a4
Ya ——Zcosec36
a

cos 0

a’ sin? 0

) b2 cos? 0
=qacosO—asin® O — 1+
sin O

Curvature

NOTES

Self-Instructional Material

207



Calculus—I

2
=acos(%)—acos(9‘sin26—b— cos® 0
a
b2 b?
=acos 0 (1 —-sin?0) —~— cos® 0 =a cos® 0 — — cos®0
NOTES 2y @ @
=2 79 (o0 ()
a
2
a 2 (1+b2 cot? GJ
+ a
and Y=y+¢=bsin6+_—
Y2 —Zcosec36
a
2 .3 2 2
. a“sin®0 b“ cos” 0
=b sin 6 — (1+ 5 J
a” sin“ 0

2
=bsme—% sin® 0 — b sin 0 cos? 0

a’ a’
=bsinB(1-cos?20)——_sin®0=>bsin®0—__sin®0

2 2
—-_Ga ;b sin® 0 (ll)

() and (i) give the co-ordinates (X,Y) of the centre of curvature of the ellipse. To
find the equation of its evolute, we eliminate 0 between (¢) and (i7).

From @), aX = (a? — b?) cos® 9, s (@X)2B = (0% — b2)2B cos? B
and from (i7), bY =— (@% — b?) sin® 0 s (bY)?B = (a%— b?)2B sin? 0

Adding, we get (aX)¥? + (bY)?® = (a? — b?)?3

Changing X to x and Y to y, we get

(@x)*? + (by)%? = (a2 — b*)?3, which is the equation of the evolute of the ellipse.

Example 15. If C_and Cy be the chords of curvature parallel to the axes of x and

y respectively, at any point of the curve y = ae*’?, prove that L + L !
- S o o o Cf Cy2 2aC,
Sol. Equation of the curve is y = ae®’®
. .. 1
Differentiating, y,=a.er. = =e’t= Y [ y=ae
a a
1 1
and y2:e3C/a_:l__:L2
a a a a

a
Y2 i ay
o2
dy _y : y a
Also tan y= = =< . siny=—=—=—and cos Yy = 7——
x a 1la2+y2 a2+y2
‘ (a2+ 2)3/2 9 9 ‘
Now  C,=Zpsiny=2-—>2— 2 20 +y) 0)
ay Ja©+y a
2, .2\3/2 2, .2
+ 2(a” +
and Cy=2pcosw=2(a ) . a4 _ 27 +y7)
@y a® + y> y
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10.

11.

1 N 1 a? N y? B 1
sz Cy2 B 4(a? +yz)2 4(a? +yz)2 B 4(a? +y2)
— 1 a — 1 .o -
_%[2(a2+y2)]_ 2a.C, [ ot O
EXERCISE D

. . 3a 3a
Find the centre of curvature for the point (—

g 7} of the folium x® + y* = 3axy.

Find the evolute of the parabola y? = 4ax.

[Hint. It is example 1.]
2 2

Find the evolute of the ellipse x_z + ‘2/—2 =1.
a
[Hint. It is example 2.]
2 2

Find the evolute of the hyperbola x_2 - ‘Z—Q =1.
a

[Hint. Take the parametric equations of the hyperbola as x =a sec 6, y = b tan 6.

a? +b? (a? +b?)

sec® 0, - tan® 0 |.

Prove that centre of curvature (X, Y) is (

Then use sec? 0 —tan20 =1.]

Define evolute of a curve and show that the evolute of the hypocycloid
23 4 y2/3 = q23 s (x + y)2/3 + (x_ y)2/3 =9 23

[Hint. Parametric equations of this curve are x = a cos® 0, y = a sin® 0.]

Find the centre of curvature for any point (x, ¥) on the rectangular hyperbola xy = ¢? and
find the equation of its evolute.

(a) Show that the equation of the circle of curvature at point (% %J on the curve

’

3 T 3T _1
J;+\/_=£is[x—za} +[y—za} =§a2.
(b) Show that the circle of curvature at the origin of the parabola

y=mx+Z_is a2+ y2=a(l + mA(y — mx).
a

Find the centre of curvature C for any point P on the catenary y = ¢ cosh [xj and
c

show that PC = PG where G is the point of intersection of normal at P with x-axis.
[Hint. PG = Length of the normal = y4/1+ ylz.]
. 1 . .
Show that the evolute of the tractrix x=c cos !+ clog tan 3 I, y=c sint is the
x
catenary y = ¢ cosh —.
c

. X .
Prove that the chord of curvature parallel to y-axis for the curve y =alog sec — is of constant
a

length.
IfC,, C, be chords of curvatures parallel to the axis of x and y respectively at any point of

the curve y = ¢ cosh x ; prove that 4¢? (Cx2 + Cy2) = Cy4.
c
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Calculus—I 12.

NOTES 13.
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14.

15.

12.

(a) Find the chords of curvature through the pole for the curves :

@) r=ae™ (@) r" = a”" cos no.

(b) Show that for the curve p=ae®, the chord of curvature through the pole is of constant
length.

(@) Show that the length of the chord of curvature through the pole of the curve

4r

r=a (1+cos0)is 3

() If C, and Cp denote lengths of chords of curvature of the cardioide r=a(l + cos 0),

along and perpendicular to radius vector through any point, show that 3(C 2+ Cp2) =
8aCy,.

Show that at any point on the equiangular spiral r = ae® <t p=r cosec o, and show that
radius of curvature subtends a right angle at the pole.

Prove that the points on the curve r=f(0), the circle of curvature at which passes through
the pole (origin) are given by the equation f(0) + f ”(6) = 0.

Answers
(Ea, Ea} 2. 27ay? = 4(x — 2a)>.
16 " 16
(ax)2/3 + (by)2/3 — (a2 _ b2)2/3 4. (ax)2/3 _ (by)2/3 — (a2 + b2)2/3.

4 2 3
Br, 2 3 L 2 e n® o ey = (o
2 2x° 2x  2c

x . .x x
(x —ccosh —sinh—,y+¢ cosh—).
c c c

(@) @) 2r )

n+1’



11. ASYMPTOTES

STRUCTURE

Branches of a Curve

Asymptote

Asymptotes Parallel to Axes of Coordinates

Asymptotes Parallel to Coordinate Axes for Algebraic Curve f(x,y) =0
Oblique Asymptotes

Oblique Asymptotes of the General Rational Algebraic Equation
Total Number of Asymptotes

Asymptotes by Inspection

Intersections of a Curve with its Asymptotes

Method to Find the Equation of a Curve Joining the Points of Intersections of
the given Curve and its Asymptotes

Asmpototes in Polar Co-ordinates

Working Rule for Finding Polar Asymptotes

LEARNING OBJECTIVES

After going through this unit you will be able to:
e Asymptotes Parallel to Axes of Coordinates
e Asymptotes Parallel to Coordinate Axes for Algebraic Curve f(x, y

e Working Rule for Finding Polar Asymptotes

BRANCHES OF A CURVE

2 2
Let us consider the equation of the ellipse x_2 + Z—z =1
a

Solving for y, we get

2 2
y=b> 1_x_2 .. @ or y=-— b”l—% ... (1)
a a

These two equations (i) and (it) represent explicity the two branches of the ellipse
which in ordinary language we call the upper and lower half of the ellipse. It is to be
noticed that the ellipse lies inside the rectangle whose sides are x =+ a and y =+ b.
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Calculus—1 Thus we see that both the branches of the ellipse lie wholly within a finite part of the
x-y plane and we say, therefore, that both branches of the ellipse are finite.
Now let us consider the rectangular hyperbola x? — y? = a?.

NOTES Solving for y, we get  y=4x?-a? or y=—,x%2-a?.

If x — + oo, y also tends of £ . In this case both the branches extend to infinity
and are said to be the infinite branches of the rectangular hyperbola.

Again, let the curve x?y? = x2 — 2, be considered. Solving for y, we have
x

x
= or y=— ———.
Y x%+1 Y ﬁxz +1

Now as x - e, y — 1 and as x — — e, y — — 1, along the first branch. Also in the
case of second branch, asx — o,y ——1and asx — —,y — 1. Here both the branches
are infinite, and x is capable of taking arbitrarily large values whereas y remains
finite.

We are already familiar with the symbols x — + < and y — *+ . But what does P
— o stand for, P being a point on an infinite branch of curve. We give the following
definition :

Def. 1. A point P(x, y) on an infinite branch of a curve is said to tend to infinity
along the curve if either x or y or both tend to + o« or — = as P travels along the branch
of the curve.

ASYMPTOTE

Def. 1

A straight line, at a finite distance from the origin is said to be a (rectilinear)
asymptote [o an infinite branch of a curve, if the perpendicular distance of a point P
on that branch from the straight line tends to zero, as P tends to infinity along the
branch.

Def. 2
Another definition of an asymptote is as follows :
A (rectilinear) asymptote to an infinite branch of a curveis the limiting position

of the tangent whose point of contact tends to infinity along the branch, but which itself
remains at a finite distance from the origin.

Def. 3

If a st. line cuts a curve in two points at an infinite distance from the origin and
yet is not itself wholly at infinity is called an asymptote to the curve.

Note 1. In the discussion which follows, we drop the word rectilinear and use simply
asymplote to mean rectilinear asymptote, unless otherwise stated.

2. The asymptotes may be parallel to either x-axis or the y-axis and accordingly they are
called horizontal and vertical asymptotes. If an asymptote is not parallel to y-axis ; it is called
and oblique asymptote.

ASYMPTOTES PARALLEL TO AXES OF COORDINATES

@) To find the asymptote parallel to y-axis, of the curve y = f(x).

Let the line x=k NE))
parallel to y-axis be an asymptote to the curve y = f(x).
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Then it is required to determine the value of k. YA
Let PM be the distance of a point P(x, y) on
the curve from the line (1), then PM = (x — k)*
Now by definition of asymptote, if line (1) is
an asymptote to the curve, then PM — 0, as P — oo,
AsP - o PM=(x—-k) —>0o0rx— k.

If P(x, y) tends to infinity as x — k, only y
coordinate tends to infinity (i.e., + = or — ), and this
gives o N

Lt x=Fk 1e, x—>kasy—oeo ..(2)
y—>eo

P(x, y)

A

bad 4

Hence to find the asymptotes parallel to y-axis, we find from the given equation,
the definite values k , ko, k., ..... to which x tends, asy — +ooor —oo. Then x =k, x =k,,
x=k, ... are the asymptotes parallel to y-axis.

(1) Asymplotes parallel to x-axis. Proceeding as above, we arrive at the following
method of finding asymptotes parallel to x-axis. From the given equation, find the definite
values d, d, d,, ... to which y tends as x — + oo or —co; theny =d, y=d, y=d,, .......
are asymptotes parallel to the x-axis.

ASYMPTOTES PARALLEL TO COORDINATE AXES
FOR ALGEBRAIC CURVE f(x, y) = 0

Case (1) Asymptotes parallel to y-axis :
Now let the equation of the algebraic curve f(x, y) = 0, after arranging in

descending powers of y, be y"0,(x) +y" =1, (x) + y" 2, (x) + ... +0,(0=0 ..(3)
where ¢,(x), 0;(x), 0,(x), ..... ¢,(x), are polynomials in x.
Dividing equation (3) throughout by y” (v ¥y —> o), we get
dox) + ;1 o, (x) + y—12 Oy(x) + .. + yinQ)n(x) =0
Taking limits as y — « and x — k, we get [From (2)]
0,(k) =0 .4

Eliminating %k from (1) and (4), combined equation of asymptotes parallel to
y-axis is ¢,(x) = 0.

Thus we arrive at the following working rule for finding asymptotes || to y-axis.

Rule. To find asymptotes parallel to y-axis, equale to zero the coefficient of the
highest power of y, present in the given equation of the curve. Resolve it now into real
linear factors.

If the coefficient of the highest power of y is either a constant or not resolvable
nto real linear factors ; then there are no asymptotes parallel to y-axis.

Case. (11) Asymptotes parallel to x-axis for the curve f(x, y) = 0.

By interchanging y and x in Case (1), we arrive at the following rule.

Rule. To find asymptotes parallel to x-axis, equale to zero the coefficient of the
highest power of x, present in given equation of the curve. Resolve L.H.S. into real
linear factors.

*Perpendicular distance of the point (x,, ¥,) from the straight line
(axl + byl + C)
§ —FF———.

ax+by+c=01
a? + b2
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Calculus—1 If the coefficient of the highest power of x is either a constant or not resolvable
nto real linear factors, there are no asymptotes parallel to x-axis.
Note. In the chapter on asymptotes, care should be taken to write the equation of the
curve s.t. R.H.S. is zero.

NOTES

SOLVED EXAMPLES

Example 1. Find the asymptotes, parallel to the axes for the curve :
) . a? b
@) x%y? = a®(x* +y?) (t1) v 1.
Sol. (i) The equation of the curve is (Making R.IL.S. zero) x%y? — a? (x* + y?) = 0.
Equating to zero the coefficient of x?, the highest power of x, we get y>—a?=0
or y =+ a, which are the asymptotes parallel to x-axis.
Again equating to zero the coefficient of y?, the highest power of y, we get
x? —a® =0 or x = * @, which are the asymptotes parallel to y-axis.
2 b2
(1) The equation of the curve is Z_Q — 7 =1
Multiplying by L.C.M. = x%y2.
or a*y? — b2 =x%y?2 or a%y?+b%W?—-a?y?=0
Equating to zero the coefficient of x?, the highest power of x, we get
y2+b2=0 or y2=-b%> or y==+1ib,
which gives imaginary values of y, and therefore there is no asymptote parallel to x-
axis.
Again equating to zero the coefficient of ¥?, the highest power of y, we get
¥?-a*=0 or «x==a,

which are the asymptotes parallel to y-axis.

EXERCISE A
Find the asymptotes, parallel to axes, of the following curves :
a2 b2
1. 2*?-ad?@?+y)—-aPx+y +a*=0. 2. 5 +—5 =1
x
xy? — x% = a® + y?). 4. x2y2 —y2 -2 =0.
yi—xy2=a2+ 1. 6.y=x(x—2)(x—3).
Answers
1. y=+a,x=*a 2.y=xb;x=%a 3. x=0
4. y=0,x==%x1 5. No. 6. No.

OBLIQUE ASYMPTOTES

If y =mx + c is an oblique asymptote to any curve f(x, y) = 0 ; then

m= Lt Y andc= Lt (y - mx).

X e X
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Let the straight line, y=mx+c¢ 1e, y—mx—c=0 (@)
be an oblique asymptote of the curve f(x, ¥) = 0, not parallel to y-axis so that m and ¢
are both finite.

Let P(x, y) be any point on the infinite branch of the curve, which corresponds to
asymptote (). If p = PM be perpendicular distance of point P from straight line (7),
then

x. y)P

P(x.y)

xXv

o X o
—mx—=cC ..

p:iyﬁ or y—mx=c*p,y1+m? -..(ur)
1+m

—m+ S+ L 14 m?
X x
Since strainght line () is an asymptote, it follows, from definition, that

p — 0, as x — . Taking limits

dividing both side by x, Y
x

Lt Y= Lt [m+

x>0 X x —> o0

R o

Hence Lt L=m ...@1)

x—eo x

Again from (17), Lt (y —max)= Lt [c + pa1+ mz}

X —> o0

=c+ 2 Lt p=c+0=c

X —> o0

1+m
Hence Lt (y—mx)=c ...@1v)
x— o

Note 1. Thus from (ii1) and (iv), m and c are determined, and putting these values in (7),
the oblique asymptotes can be found out.

2. The above article requires m and c¢ to be finite. In particular m may be zero and
therefore the asymptotes parallel to x-axis can also be found by using this article. Thus by the
method of this article all the asymptotes of a given curve can be determined, excepting those
which are parallel to y-axis.

OBLIQUE ASYMPTOTES OF THE GENERAL RATIONAL
ALGEBRAIC EQUATION

Let the general algebraic equation of nth degree be
(aoyn + alyn— 1 X+ a2yn—2x2 + .+ aﬂf lyxn— 14 anxn) + (blyn— 14 b2yn—2 X
+.o.+b, yxrZ+bath+ i+ y+tlotk =0 ()
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Calculus—I which can be written in the form

0, (l) T (l) T x¢1(l) + 0, (XJ 0 D)
x x x x
NOTES where Q)F(Z) is a polynomial in Y of degree r.
x x

[We know that a homogeneous expression of degree n in x and y can be

written as x" ¢, (lj]
x

Let the straight line y=mx-+c ...@1)
be an asymptote of curve (i), where m and ¢ are finite ;
then m= Lt Y .c= Lt (y—m) [By Art. 4]
X g X —> o
To find m,divide both sides of (i) by x", we get
q{l) 1 o 1(2) + %%2(2) Foteene, +....=0
x X x x x
Proceeding to limit as x — oo, so that Lt Y= m, we get
X—>o X
¢, (m)=0 ...(Iv)

which gives the slopes of the asymptotes.

To find ¢, corresponding to a value of m.

Lety—mx=p,sothatasx -, p —>c¢ [ c= Lt (y—mx)}

X —> o0

Then 2 =m + £ Putting this value for Y in @), we get
x x x

an)n(m +£) +x" - 1¢n _ 1(m + BJ + .. + X'Q)l(m + BJ + q)o(m +£) =0
X X x x

Now expanding each term by Taylor’s theorem, we have
2

x"{¢n(m)+£¢n,(m)+ p 2¢;’(m)+....}+x"1[¢n_1(m)+£¢;_1(m)+...}
x 21 x x

+ x"2[¢n_z (m)+§.(|);1_2 (m)+...} +.=0 ..(v)

But ¢, (m) =0, from (iv). Putting ¢, (m) = 0 and arranging the remaining terms
in (v) is descending powers of x, we get

2
" po,(m) + ¢, (m)] +xm? %.q);{(m) +p. 0 1(mM)+0,_s(m)|+ . =0
L J ..(v1)
Dividing throughout by x" 1, we have
-, ;
D0,y + 0, (m)+ 1| Lo o m)+ g} 1m)+ 0, p0m) |+ =0
x !

Now proceeding to limits as x — oo, so that p — ¢, we have
co/ m)+¢ _,(m)=0 .. (vir)
If ¢,’(m) # 0, which will be case, if equation ¢, (m) = 0, has no repeated roots,
0, -1 (m)
o7, (m)

then we have ¢ = —

216  Self-Instructional Material



fm;, mym, ... be the non-repeated roots of ¢ (m) =0, and ¢, ¢,, c,, ......
are the corresponding values of ¢ determined from (vii), then y = mx + ¢,
Y=MX+c,, y=myX+c, ... are the asymptotes.
Exceptional Case. When ¢,'(m) = 0, but ¢, | (m) # 0, the finite value of ¢ cannot be
determined from (vii), and there is no asymptote in this case.
Case of parallel asymptotes. If ¢ ‘(m)=0and ¢, , (m)=0, which is generally
there when two roots of ¢, (m) = 0 i.e., two values of m given by ¢ (m) = 0 are equal,

then equation (vii) becomes an identify and in this case, the equation (vi) reduces to

2
p

n—2|—-
21

x 07 (M) + pdl, 1 (M) + 0y o) |+ yn-3 [+ ]+ =0
Dividing throughout by x" 2, we get
2

144 4 1
B0, m) + pW, () 0,y )+ = L]+ =0
Now proceeding to limits as x — oo, so that p — ¢, we have
2

57 0" m) + e, (m) +4, , m)=0

which gives two values say ¢/, ¢” for ¢, provided ¢,”(m) # 0.
Thus we have two asymptotes
y=mx+ ¢ ;y=mx+c”, corresponding to a given slope m. These are evidently
parallel.
The above discussion leads us to the following working rule for finding
oblique asymptotes of an algebraic curve of nth degree.
@) Find the polynomial ¢,(m), which can be obtained by putting x=1,y=m
in the highest degree terms of the given equation of the curve.
@1) Put ¢,(m) equal to zero, solve for m, and let the roots be m ,, m, m.,, .......
(iir) Find the polynomial ¢, ,(m) by putting x = 1, y = m in next lower degree
terms of the given equation. Stmilarly, polynomial ¢, ,(m) can be found out
by putting x =1, y = m in the next lower degree terms of the equation, and so

on.
@v) Find the values ¢, ¢y, c,, ... corresponding to values m, my, m,, ....... by using
) ¢, _; (m) }
the relation c¢=— # [provided ¢,’(m) # 0]
¢, (m)

(V) The required asymptotes arey =m x +c,, y =myx +c,, y=mx +c,.......
i) If ¢,/ (m) = 0 for some value of m, but ¢, ,(m)# 0, then corresponding to that
value of m there is no asymptote.
i) If ¢,/(m) = 0= ¢, ,(m), for some value of m (i.e., lwo roots of ¢,(m) =0 are
equal), then the values of ¢ are found from the equation
2

C 144 /
570, m) %t (m)+ 9,y (m)=0.
This gives two values of ¢, and therefore there are two parallel asymptotes
corresponding to this value of m.
(viti) If the three roots of ¢, (m) = 0 are equal ; [i.e., ¢,”(m) = 0,

o, ,(m)=0,0, ,m)=0] then values of c corresponding to that value of m
are obtained from the equation

3 2
S70 M)+ S0 (m)+ el (m) + 0, (m) =0,
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Calculus—I Note 1. Asymptote corresponding to m =0, as a root of ¢, (m) = 0, is parallel to x-axis,
and are directly obtained by method of Article 3 case (ii).

2. When it is required to find the asymptotes of a curve, it is advisable to first find the
asymptotes parallel to axes, if there be any, and then search for the oblique asymptotes.

NOTES Example 1. Find all the asymptotes of the following curves :
(@) x4+ 202y —xy?— 295+ ey + Sy2+x+ 1=0.
) x% + 4%y + dxy? + 52+ 15xy + 10y° — 2y + 1 = 0.

Sol. (a) The equation of the curve is

2+ 2%y —xy? — 293+ 3xy + 3y2+x+1=0 O]
Since the coefficients of x*> and y°, the highest degree terms in x and y, are
constant, .. therearenoasymptotes parallel to x-axis or y-axis. Now to find oblique

asymptotes ; putting x = 1, y = m in the third and second degree terms in (1), we get
0,(m) =1+ 2m —m? — 2m? and ¢,(m) = 3m + 3m?
The slopes of asymptotes are the roots of ¢ (m) =01i.e., ¢,(m) =0,

e, of 1+2m—-m?2-2m*=0or 2m°+ m2-2m—-1=0.
m = 11s a root of this equation by inspection. Using synthetic division
1 2 1 -2 -1
2 3 1
2 3 1 0
The reduced equation is 2m2+3m+1=0
Solving for m, we get m=-—1, _71
1
. m = — 1, 1, - 5
Also 0,/ (m) = 2 — 2m — 6m? = — (6m* + 2m — 2)
Now c is given by cd,’(m) + ¢,(m) =0 | co,"(m) +¢, _,(m)=0
Og(m) 3m+3m®>  3m+3m®
03 (m) —(6m*+2m-2) 6m®+2m -2
-3+3 0
When m =—1, 0_6—2—2_5_0
6
When m =1, c=i=—=1
6+2-2 6
3 . 3
1 o4 1
and whenm=-—, C:A:—‘
2 3 1 5 2
2
Putting these values of m and ¢ in y = mx + ¢, the corresponding asymptotes are
1
y=—x+0, y=x+1 and y=—%x+§
or x+y=0, x—y+1=0 and x+2y—1=0.
(b) The equation of the curve is
X + 4y + 4xy? + 5x? + 1bxy + 10y2—2y+1=0 O
Since the coefficient of x°, the highest degree term in x, is constant, .. there is

no asymptote parallel to x-axis. Again equating to zero the coefficient of ¥2, the highest
degree term in y, the asymptote parallel to y-axis is given by the equation

4+ 10=0 or 2x+5=0

218  Self-Instructional Material



Now to find oblique asymptotes, putting x = 1, y = m in the third and second Asymptotes
degree terms in the equation of the curve, we get
O, (m) = 1+ 4m + 4m?,

and 0y(m) =5+ 15m + 10m?
Slopes of asymptotes are given by the roots of equation ¢,(m) = 01i.e., by roots NOTES
of
1+4m+4m?2=0 or (1+2m)2=0
m=— %, - % (Equal)

¢ 1s now given by the equation
2
c
S1 b M F e, )+, _y(m) =0

1 .
Here 21 ¢ ¢, (m) + c¢’y(m) + ¢,(m) =0 ... (i)

Now ¢,/ (m) =4+ 8m, ¢,”(m) =8, ¢,/ (m) =15+ 20m and ¢,(m)=—-2m
1
Equation (it) becomes 502 .8+ c¢(15+20m) —2m =0

For m =— %, it becomes 4c¢? + ¢(15—-10)+1=0

or 4¢2+b5c+1=0 or (c+1Dcc+1)=0
1
c=-1, c=-7

Hence the corresponding asymptotes are

1
=——=x-1 and =——x-=
YT YTy

or x+2y+2=0 and 2x+4y+1=0.

Example 3. Show that the parabola y? — 4ax = 0 has no asymplotes.

Sol. Since the coefficient of y?, the highest degree term in y, in the equation of
the parabola is a constant, .. there are no asymptotes parallel to y-axis. Again, since
the coefficient of x, the highest degree term in x is also a constant, .. there is no
asymptote parallel to x-axis.

For finding oblique asymptotes putting x = 1, y = m in the second degree and
first degree terms in the equation of the parabola, we get

0,(m)=m? and ¢,(m)=—4a.

Slopes of asymptotes are given by the roots of equation ¢,(m) =0 i.e., by the
equation m2=0or m =0, 0

But asymptotes (if any) corresponding to m = 0 are parallel to x-axis. But it has
been proved above that there are no asymptotes parallel to x-axis.

Hence the curve has no oblique asymptote.

Since the parabola has neither oblique asymptotes nor asymptotes parallel to
the axes,

it has no asymptotes.
Example 4. Find all the asymptotes of the curve (x +y)2 (x +y +2) =x+ 9y — 2.
Sol. The equation of the curve is
@+y? (x+y+2)=x+9y—2
or x+y)>P+2x+y)2—-x—-9y+2=0 0

Since the coefficients of x* and y°, the highest degree terms in x and y are

constants, therefore there are no asymptotes parallel to x-axis or y-axis.
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Calculus—1 Now lo find oblique asymplotes ; putting x = 1, y = m in the third, second, first
degree terms and constant terms in (1), we have

Og(m) = (1 + m)? 0y’ (m) = 3(1 + m)*
Oy(m) = 2(1 + m)? 05" (m) = 6(1 + m)
NOTES ¢,(m)=—1-9m ¢,"(m) =6
Oo(m) =2 0y’ (m) = 4(1 + m)
0, (m) =4
0,"(m)=-9
Slopes of the oblique asymptotes are given by ¢,(m) = 0
i.e., by 1+m)*=0 .. m=-1,-1,-1
For these three equal values of m =— 1, values of ¢ are given by
3 2
S0 m) + T0,7(m) + eo, (m) + o, (m) = 0
3 c?
or ?.6+?(4)+c(—9)+220 or ¢2+22-9c+2=0

¢ = 21s a root of this equation by inspection.
Using synthetic division,

2 1 2 -9 2
2 8 -2
1 4 -1 0

The reduced equation is ¢2 + 4¢c — 1 =0

—4+ 1644 —4+92J5
2

Solving for ¢, c= ) =
or c=—21+45
For m = — 1, the three different values of ¢ are

2,—2+.45 and—2— 45
Equations of the three asymptotes are

y=mx+c¢
Le., y=—x+2y=—x-2+.5
and y=—x—-2-45.
EXERCISE B
Find all the asymptotes of the following curves (. No. 1—16) :
1. a%y2=a?(x2 +y?) 2. xy2 = 4a2(2a — x) 3. x% + y3 = 3axy

4. (@) P +3xy? —x2y -3y +x2 —2xy+3y2+4x+7=0
(b) x* —6x2y + 11xy?2 —6y3 +x+y+1=0

Y3 — a2y —2xy? + 2x° — Ty + 3y2+ 242+ 2x+ 2y +1=0
X2+ 4xy +5xy2 + 2y3 + 22+ 4xy + 292 —x -9y +1=0
y3 —Bxy? + 8x2y —4x% —3y2 + 9xy — 642+ 2y —2x+1=0
(@) 4x° —3xy2 —y> + 222 —xy—»y?—-1=0

b)) x®+2x%y+xy2 —x2—xy+2=0

© -2y +xy? +x2—xy+2=0

® N ew
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10.
11.
12.
13.
14.
15.
16.
17.
18.

19.

20.

21.

10.
12.

13.

14.
16.
19.
21.

(@) x(y —x)2=x(y —x) + 2
D) 4Py —x0) +y(y =2 (x—y) =4dx+4y -7
x—y)? + a6 — y?) = a’xy
@-DEx-DE+y)+x2+x+1=0
B+ 3%y -4y} —x+y+3=0
-y —xy? i+ 2% —4y?+ 2y +x+y+1=0
x2y2(x2 _ y2)2 — (x2 + y2)3
(x+ )2 + xy + %) = a*® + aP(y — ¥)
(@ = ) = 2y)(x - 3y) — 2a(x® - %) - 2a*(x - 2y)(x + ) = 0.
Prove that the asymptotes of the curve x*y% = a2(x? + y?) are the sides of a square.
Show that the asymptotes of x*y? — a?(x* + ¥%) — a®(x + y) + a* = 0 form a square, through
two of whose vertices the curve passes.
X
x? -1
[Hint. Rectangular Asymptotes = Asymptotes at right angles to each other. Cross-
mutiplying y(x? — 1) = x.]
Find the asymptotes of the curve (x+y + 1)(x*>+ y?> —xy) —3xy + x>+ y> + 2x -3y + 5=0.
[Hint. Simplifying (x + y)(Z +y? —xy) + (P +y? —xy) = 3xy + 22 + >+ 2x -3y +5=0
or (x+E2+y2—xy) + 202 +2y2 —dxy +2x -3y +5=0.]
Find the asymptotes of the curve (x+ y + 1)*(x® + y> — xy) + 3xy — 7Ta> —2y> = Tx + 8 = 0.
Remark. The above equation can be written as
[(x+y)2+2x+y)+1] (2 +y2—xy) + 3y — 722 -2y —Tx+8=0
or (x+y)? (¥ +yP—xy)+2x+y) (P +y —ay) +aF+yF—xy + 3y - Ta -2y —Tx+8=0
or (x+y)2E2+y2—xy)+2x+ )2+ y2—xy) —6x2—y2+2xy—Tx+8=0.

Find rectangular asymptotes of the curve y =

Answers
x=+a,y==%a. 2. x=0. 3.x+y+a=0.
(@) 2x—-2y+1=0. b)x—y=0,x—2y=0,x—3y=0.

y=—x-2,y=x-1,y=2x. 6.x+2y+2:O,x+yi2\/§=O‘
x—y=0,2x—y+1=0, 2x—-y+2=0.

(@2x+y=0,2x+y+1=0, x—y=0

(b) x=0, x+ty=0, x+y=1.

(¢) x=0, y—x=0, y—-x=1.

(@) x=0, y=x,y=x+1.

b)x—y=0,2x—y+1=0 and 2x+y-1=0.

x=+a,y=x=*a. 11. x=1, x=2, x+y+1=0.

y—x=0, 2y+x—-1=0 and 2y+x+1=0.
x+y—1=0,2x—2y+@B+,/5)=0, 2x—2y+B-+5)=0.
xiy::t\/a, x=+x1, y==+1. 15. x+y+xa=0.
x=y+ta, x=y+2a, 2y=x+1l4a, 3y=x-13a.

x==x1, y=0. 20. 3x+3y+8=0.
x+y—1=0 and x+y+3=0.
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Calculus—I

TOTAL NUMBER OF ASYMPTOTES

To show that a curve of degree n can never have more than n asymptotes.
NOTES Consider the equation of algebraic curve of nth degree of the form

BTSN NS 1

where Q)F(ZJ is a polynomial in Y of degree r.
x x
The slopes of oblique asymptotes are given by ¢ (m) =0, which is an equation of

degree n and thus has at the most n real roots.

Since for each value of m, we have, in general, one value of ¢ determined by the
equation ¢ ‘(m) + ¢, ,(m)=0, .. itfollows that a curve of degree n has,in general,
at the most n asymptotes. In case the curve has one or more asymptotes parallel to y-
axis, then the degree of equation ¢ (m) = 0, is smaller than n by at least the same
number.

Further when equation determining ¢ is an equation of second degree ; then
¢,/m)=0and .. itfollows that ¢ (m)=0, has two equal roots. Thus, there are two
values of ¢ corresponding to two equal roots and there would be at the most (n — 2)
other asymptotes corresponding to the remaining roots. Hence it follows that a curve
of degree n can never have more than n asymptotes.

ASYMPTOTES BY INSPECTION

If equation of a curve of degree n, is of the form F, +F _, =0 where I, is of
degree n [i.e., contains terms of degree n and may also contain lower degree terms],
and F, s of degree (n — 2) at the most, then every linear factor of I, equated to zero,
will be an asymptote, provided no two linear factors of I’ are either coincident or differ
by a constant.

Let (ax + by + ¢) be a non-repeated factor of I', and let

F =(x+by+cF, ,whereF isofdegree (n—1).

The asymptote parallel to ax + by + ¢ = 0, 1s given by

Fn—2
ax+by+c+ Lt =0
3;,_)°°a n-1
x b

Now to find the limit —"=2 | the numerator as well as denominator is divided by

n-1

. 1
x" ! and it would be seen that — appears as a factor
x

Lt 222 50, as x — oo,
n-1
Hence ax + by + ¢ = 0, is an asymptote.
Cor. If the equation of the curve is of the form U, . U, . U, ...... u,+F, ,=0
where U, U,, U,,...... , U, are linear factor, then the curve has U, =0, U,=0, U, =0,
..., U, = 0 as asymptotes provided no two of the factors are coincident or differ by a

constant.
Note. Conversely, a curve having straight lines U, =0, U, =0 ...... U, =0, as
asymptotes, must have an equation of the form U,. U,. U, .......... U +F, _,=0.
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SOLVED EXAMPLES Asymptotes

2 2
Example 5. (a) Find the asymptoles of x_2 Y =y
a

b2
(b) Find asymptotes of the curve xy(x> —y2) + 2x2 + 2y +1=0. NOTES

2 2
Sol. (a) The equation of the curve is (x_z _Z_ZJ_ 1=0
a
This is of the form F_+F =0 [n = 2], where I, can be split up into non-
repeated linear factors.

Thus the asymptotes are given by F, =0

2 2
X Y X yiyx_JY
RO A e | R
or a? b? or (a b)(a b) 0
x Y x_Y_
a+b 0 and P 0,

are the required asymptotes.
(b) The equation of the curve is xy(x2 —y9) + 2x2 + 2y2+ 1=0
This i1s of the form F +F, ,=0 ®m=4).
The linear factors of F,=xy(x?—y? arex,y, (x—y) and (x + y).
Since none of them is repeated, the four asymptotes of the curve are
x=0, y=0, x—y=0 and x+y=0.

INTERSECTIONS OF A CURVE WITH ITS ASYMPTOTES

To prove that any asymptote of an algebraic curve of the nth degree cuts the
curve in (n — 2) points.

Let y=mx+c (@)
be an asymptote of the algebraic curve

an)n(%) +xn1¢n1(%J + x"2¢n2(%J +...=0 (”)

To find points of intersections of asymptote () and curve (i7) let us solve them for
x and y.

Putting value of y from () in (i7) (i.e., Putting Y om+ E)
x x

the abscissae of the points of intersection are the roots of the equation

c c c
x”¢n(m+;J+x"1¢n1(m+;)+x"2¢n2(m+;)+ ...... =0

Expanding by Taylor’s theorem, we have
2

x"{¢n(m)+£¢n,(m)+ic—2.¢n”(m)+...} Fanet [%—1('””3%—1("1” }
x ''x X

2!
+am %[0, Jm)+..]+..=0
Or arranging the terms according to descending power of x, we get
X", (m) +x" e . ¢, (m)+ ¢, (m)]

2
N x2|:% 07 (m) + ¢, _1(m) +¢n_2(m)} +..=0 .G

Self-Instructional Material 223



Calculus—I Since (7) is an asymptote of (i7), . m and ¢ are given by
¢,m)=0 and c¢,'(m)+o, ,(m)=0
Substituting these values in (i17), it reduces to

2
NOTES X2 [% oy (m) +cd;, _1(m) +¢n_2(m)} +x" 3] +...=0

which is an equation of (n — 2) th degree and determines (n — 2) values of x.
Hence (7) cuts (i) in (n — 2) points.

Cor. 1. If a curve of nth degree has n asymptotes, then they cut the curve in
nm — 2) points.

Cor. 2. If the equation of a curve of nth degree can be put in the form I’ + F
=0, where I’ _, is of degree (n—2)at the most and I, conststs of n non-repeated linear
factors, then the n(n — 2) points of intersection of the curve and its asymptotes lie on the
curve I, ,=0.

Proof. The joint equation of n asymptote of curve is F =0, and the n(n — 2)
point of intersection of the curve and its asymptote satisfy the two equations
F, +F ,=0andF =0, simultaneously.

They also satisfy the equation, (F, +F, )—-F =0 ie, F =0

n-2

Hence the result.

For example :

(1) The asymptotes of a cubic curve, cut the curve in 3(3 — 2) = 3 points which lie
on a curve of degree 3 —2 =1 1.e., on a straight line.

(11) The asymptotes of a biquadratic or quartic curve, cut the curve in 4(4 —2) =8
points which lie on a curve of degree 4 —2 =2, 1.e., on a conic.

METHOD TO FIND THE EQUATION OF A CURVE
JOINING THE POINTS OF INTERSECTIONS OF THE
GIVEN CURVE AND ITS ASYMPTOTES

Step I. Find the asymptotes of the given curve by the methods explained in
Art. 3 and Art. 5.

Step II. Make the R.H.S. of the equation of each of these asymptotes as zero
and multiply the L.H.S. of all these equations of the asymptotes to get the joint equation
of asymptotes.

Note. But if the equation of the curve is of the form ', +F, ,=0as givenin Art. 7 ; then
there is no need of doing steps [ and II ; as the joint equation of the asymptotes as explained
in Art. 7is I, = 0 provided I, is the product of non-repeated linear factors.

Step III. The number of points of intersections of the curve and the
asymptotes is n(n — 2) (Cor. 1., Art. 8) where n is the degree of the curve.

Step IV. Then equation of the required curve is L.H.S. of equation of the given
curve after making R.H.S. zero + A (joint equation of the asymptotes after making
R.H.S. zero) where A =1or — 1 or 2 or — 2 etc.

Example 6. Show that the points of intersection of the curve 2y° — 2x%y — 4xy?
+ 4x5 — 14xy + 6y? + 452 + 6y + 1 = 0, and its asymplotes lie on the straight line 8x + 2y
+1=0.
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Sol. The equation of the curve is
2y% — 2x%y —4xy? + 4a° — 14y + 692 + 42 + 6y + 1 =0 0
Since the coefficients of x® and y°, the highest degree terms in x and y are
constants,
the curve has no asymptote parallel either to x-axis or y-axis.

Now to find oblique asymptotes, putting x = 1, y = m in the third and second
degree terms in (i), we get ¢,(m) = 2m® — 2m — 4m? + 4 and ¢,(m) = — 14m + 6m?* + 4.

The slopes of asymptotes are the roots of ¢,(m) =0
te., of 2m*-2m—-4m?+4=0 or Cm-4AHmM?>-1)=0

RS m=21,-1
Also 0,/ (m) =6m?—2—8m =2Bm?—4m — 1)
Now c¢ is given by, c¢,’(m) + ¢,(m) =0
 0ym)  -14m+6m®+4  Tm-3m® -2
05 (m) 28m* -4m -1 3m?-4m-1
14-12-2
Wh :2 = ee—
o 12-8-1
When m =1, C:m:i:_l
3-4-1 -2
-7-3-2 -12
and when m=-1, c= 3:4-1 = 5 =—2.

Putting values of m and ¢ in y = mx + ¢, the corresponding asymptotes are
y=2x+0, y=x—1 and y=-x-2
Making R.H.S. of each equation as zero,
20—y=0,x—y—-1=0 and x+y+2=0.
These three asymptotes will cut the curve again in 3(3 — 2) = 3 points. The joint
equation of the asymptotes is Cx —y)(x—y— D(x+y+2)=0

or 2x% — 2xy2 — a2y + 98 —Tay + 3y2 + 202+ 2y —4x =0
Multiplying by 2 throughout,
2y% — 2x%y — 4xy? + 4x° — 14y + 6y2 + 42 + 4y —8x =0 ... @)
Now equation of the given curve is
2y3 — 2x%y — Axy? + 4x3 — 1dxy + 6y? + Ax? + 6y + 1 =0 ...(ti1)

Hence the 3 points of intersection of asymptotes (i) and curve (tit) also lie on
the curve (1) — (iir)
l.e.,on x+2y+1=0
which is the required straight line.

Example 7. Find the equation of the quartic curve which has x =0,y =0, y =x,
andy =-x, for asymplotes and which passes through (a, b) and which cuts the asymptotes
in eight points that lie on the circle x% + y? = a®.

Sol. The equations of the asymptotes are x=0,y=0,y—x=0andy +x=0
The joint equation of the asymptotes is

-y +x)=0 or xy(r?*-x)=0 ..(0)
The equation of given circleis  x?+ 32 —a?=0 ... @)
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Calculus—I

The equation of any quartic curve whose asymptotes are given by () and whose

points of intersection with its asymptotes lie on (it) is given by

xy(y? —x?) + A2+ y2—a?) =0 ...(1i1)

where A 1s a constant.

NOTES

or
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10.

11.

This passes through the point (a, b).

2 2
-b
ab®? —a®) +Ma2+b%-a?)=0 or XZM

Putting this value of A in (ii7), the equation of required curve is

2 12
xy(y2_x2)+M(x2 +y2_a2)20

bxy(y? — x2) + a(@® — bH(x%2 + y2 —a?) = 0.

EXERCISE C

(@) Find the asymptotes of the curve x%y — xy% + xy + y2+ x—y =0, and show that they cut
the curve in three points on the straight line x + y = 0.

(b) Find the equation of the straight line on which lie the three points of intersections of
the cubic & + 2x2%y —xy? —2y® + 4y2 + 2xy +y — 1 = 0.

Show that the asymptotes of the cubic, x* — 2y3 + xy(2x —y) + y(x—y) + 1 =0, cut the curve

in three points which again lie on the straight line x—y + 1 =0.

Find the asymptotes of the curve x(x* —y?) + y(3y — x) = 0 and prove that the three points

where these asymptotes cut the curve lies on 7x -3y +6 =0.

Show that the points of intersection of the curve 4x* — 2x%y — 4xy? + 2y + 6y> — 14xy + 412

+ 6y + 1 =0 and its asymptotes lie on 8x + 2y + 1 = 0.

Show that the asymptotes of the curve (x% — y?)(y? — 4x%) + 6x> — 5x%y — 3xy? + 2y — &2 +

3xy — 1 =0 cut the curve again in eight points which lie on a circle of radius unity.

Find the asymptotes of the curve xy(x* —y?) + x% + y?> = a?, and show that the eight points

of intersection of the curve with its asymptotes lie on a circle whose centre is at the

origin.

Show that the eight points of intersection of curve x* —5x%y> + 4y* + x> —y> + x+y+1=0

and its asymptotes lie on a rectangular hyperbola.

[Hint. A second degree curve is a rectangular hyperbola if its asymptotes are at right

angles.]

Show that four asymptotes of the curve xy(x? — y?) + 25y + 9x% — 144 = 0 cut it again in

eight points on an ellipse whose eccentricity is 5

[Hint. Eccentricity e of the ellipse is given by b2% = a2(1 — ¢2).]

Find the equation of the hyperbola having x+y—1=0, and x—y+ 2 =0, as its asymptotes,

and passing through the origin.

(@) Find the equation of the cubic, which has the same asymptotes as the curve
x> —6x%y + 11xy?> —6y3 + x+ y + 1 =0 and which passes through the points (0, 0), (1, 0)
and (0, 1).

(b) Find the equation of the cubic which has the same asymptotes as the curve
x> —6x%y + 11xy2 —6y> + x+ y + 4 = 0 and which passes through (0, 0), (2, 0) and (0, 2).

Find the cubic which has the same asymptotes as the curve x* — 6x2y + 11xy? — 6y3 + x

+3y+ 1 =0 and which touches the axis of y at the origin and goes through the point (3, 2).

[Hint. Tangent at the origin is obtained by equating the lowest degree terms to zero.]



Answers

(@y=0,x—1=0 and x-y+2=0 b)x+3y=1
3. x=3,y=x+1,x+y+2=0 6. x=0,y=0,xxy=0
. xty-Dx—-y+2)+2=0
10. () x° —6x2y + 11xy2 -6y —x+ 6y =0 (b) ® —6x2y + 11xy%2 —6y% —4x+ 2y =0

11. 2% —6x2%y + 11xy? —6y> —x=0.

ASYMPTOTES IN POLAR CO-ORDINATES

Theorem 1. The polar equation of any line is p =r cos (0 — o) where p is the
length of the perpendicular from the pole to the line and o, is the angle which this
perpendicular makes with x-axis.

Proof. Let O be the pole and OX be the initial
line.

Let P(r, 6) be any point on the given line.

OP =r and £XOP = 0.

Let OT = p be the length of perpendicular from

pole on the given line and £XOT = a.
ZTOP = ZXOP — ZXOT =6 - a.

Now in AOPT,
OoT »p B
cos(G—a):@=7 X
or p =r cos (0 — o) is the required equation of the line.

Theorem 2. The length of the perpendicular from a point P(r,, 0,) on the line
p=rcos(®—o)isx(p—r,cos(0,—a)).

Proof. Let p =r cos (0 — o) be the equation of A
the line AB. .

OT =p and £XOT = o.

Through P(r,, 6,) draw a line A’ B” parallel
to AB and let PM = d be the length of perpendicular
from 1 on the line AB.

R ON=0OT+ TN=OT+PM=(p+d)
and /XON =

Equation of line A’ B’ is
ptd=rcos (-0

It passes through P (r;, 6,)

: ptd=r cos (0, —)
d=—p+r cos (0, —0a)=—(@—r, cos (0, —a)).
Slmllarly, by taking P below AB, we could see that
d= @@ —r,cos (6, — )

Combining the two ; d (the perpendicular distance of P(r;, 6,) from the line

p =r cos (6—)) is given by
d=£(p-r, cos (6;,— )

Working rule for finding the perpendicular distance of a point from the linep =r
cos (0— o).

1. Make R.H.S. of equation of the line as zero.

2. Substitute the co-ordinates of the point in L.H.S. to get L distance.
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Calculus—I Polar equation of an asymptote to the curve r = f(0) is

p =r sin (6, — 0) where p= Lt ﬂ(u = 1)
-0, du r
and 0, is a root of the equation obtained by putting u =0.)

NOTES Let p=rcos (60—

be an asymptote to the curve r = f(0)
We are to determine p and o.
Let P(r, ) be any point on the curve ().
PM, the distance of P(r, 0) from the line (i)
=p-—rcos (60— ) ...@)
(See Working Rule Theorem 2, Art 10)
Line (1) 1s an asymptote to curve (i1),
therefore PM — 0 P(r, 6) — « along the curve.
As P(r, 0) recedes to infinity along the curve ; r — « and 0 tend to a finite value
or values (say 0,).
(It should be noted that 6 — o for circular asymptotes which are beyond the
scope of our learning.)

1
Also r — e impliesu — 0 ( r= —)

u
Dividing both sides of (iii) by r , we get
%zﬁ —cos 0—o)
r r

Taking limits as r — o, 6 = 0,, PM — 0, so that
0=0-cos (®,—) or cos(®,—a)=0

n .
61—0c=§ 0‘:61_5 ...(tv)

So we have determined o.
Now taking limits in (iz7) as PM — 0, r — o, 6 — 6, ; we have
O=p— Lt rcos (6—)

r— oo
0—0,

or p= Lt rcos(®—0o)
r— oo
60— 0,
=Ltrcos(9—91+gJ ‘ From(iv),oczel—g

= Lt —rsin (6-9,) | It is of the form o . 0
66,
sin (6 — 04)
or p= Lt T 1y ! ‘Formg
s () ’
06— 0, —
”
sin (6 -0;) L cos(0-6,)
or p uEtO u u—0 du
06— 0; 0—6, a0
(By I Hospital Rule)
S 2t 00, =1t[-22 )
= t@ t cos (-0, =Lt du ..V
do

[ Lt cos (0—0,) =cos 0=1]

60— 0,
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So we have determined p.
Putting the value of o from (fv) in (i), equation of the asymptote is

D =T cos (6—61+g) or D =T cos [g—(@l—ﬂ)}

or p =rsin (0, —6) where p as given by (v) is= Lt - ﬁ
00, du

WORKING RULE FOR FINDING POLAR ASYMPTOTES

Step I. Put r =— in the given equation. Also change all T-ratios if any into sin 0
u
and cos 6.

Step II. Find the limit of 6 as u — 0. Let 0, be this limit or one of the limits if
more than one such limits exist.

Step III. Determinep= Lt (— ?j for value or values of 0 obtained in Step 11.
0—0; u
u—0

Step IV. Putting the values of p and 0, in the equation p =r sin (6, - 0), we
gel the corresponding asymptote.
Note. If Lt (— @) does not tend to a finite limit ; then there is no asymptote
60— 0, du
corresponding to the value 6 =9,.

SOLVED EXAMPLES

Example 8. Find the asymplotes of the curve r 6 = a.
Sol. The equation of the curve is 0 = a.

0 0
Put r=l o= =a u=_.
u a
0 .
As u—>(),;—>0 e, 0—=0 0,=0
. 0 d 1
Since u = —, therefore a_ =
a do a
p= Lt _ﬁ = Lt —a=-aq.
60— 0, du 60
Equation of the asymptote is
p=rsin(® —-06) or —a=rsin(-0)=-rsin0
.e., r sin 0 = a.

Remark. The student should remember the following results from Trigonometry.

1. If sin 6 =0 ; then 8 = nmt where n is any integer.

2. If cos =0, then 6=2n +1) g
3. sin (nm+0) = (- 1)" sin 6.
4. cos (nm+ 0) = (— 1)" cos 6.
5. If cos 6 = cos o, then 0 =2nm + .
6. If sin 6 =sin o, then 6=nn+ (- 1)" a.
7. If tan 6 = tan o, then 6 = nm + o.
1

8. =

(-n"
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Calculus—1 Example 9. Find the asymplotes of the curve r cos 0 = a sin? 0.
Sol. The equation of the curve is r cos 8 = @ sin? 0

1
Put r=— . lcos 0=asin?0
u u
NOTES _ cos6
" asin’?6
cos 0 )
As u—0,———5-—>0, 1e, cosf—-0
asin® 0
. T
0 @2n+1) g i 0,=@n+1) 3
cos 6
Since U=—"—5-
asin” 0
du 1 sin?0 (- sin 0) — cos 0. 2 sin O cos O
de a sin* 0
(= sin® 6 — 2 sin 6 cos? 0)
asin?@
_ —sin® (sin?6 + 2 cos? 0) - (sin? 6 + 2 cos? 0)
asin?@ asin®0
.3
- L (_@J: Lt a sin® 0
60— 0, du 0—@2n+Dn/2 sin? O + 2 cos?
o _, e’
(-D"*+0
i i o
sin(@2n+ 1) ==sin|nn+—=|=(-1)" sin = =(-1)"
in ( ) 2 ( 2) -1 2 (-D
and cos(2n + 1) T cos (nn + E) =(-1" cos T_o
2 2 2
or p=a=1"
Equation of the asymptote is
p=rsin (0, —0)
i1
or a(=1)"=rsin [(211 +1) 9 9}
. oL
or a(=1)"=rsin (nn + 3 6)
. (m
or a(-1)"=(1D"rsn (5 - 9) or a=rcos0.
Example 10. Find the asymptotes of the curver =a sec 6 + b tan 0.
Sol. The equation of the curve is r = a sec 6 + b tan 0.
1
Put r=— and change all {-ratios in sin 6, cos 6.
u
1l _a bsin® a+bsin0
u cosO cosO cos 0
cos 0
u=—->—""-
a+bsin0
As u/—>0,ﬂ—>0 ie., cosB—0
a+bsin0
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0 @2n+1) g ie, 0,=@n+1) g

cos O

Since u=——
a+bsin0

du _ (a+bsin0)(-sin B) - cos 6 (b cos 0)

do (a +b sin 0)?
or du  (asin0+b)
do (@ +b sin 0)?
do in 0)2
= Lt (__): Lt (a+.bsm6)
00, du) e-@n+Dw/2 (asind+b)
e
+bsin(2n+1 =
_[a sin (2n )2} _[a+b(—1)”]2
- - n
[a sin (2n + 1)’2‘+b} la(=1)" +b]
. T
sin(2n+1)—=
in(2n+1) 3
T T
sin|nn+—=({=-1D"sin—=(-1""
i (n 2) (=D" si 5 CRY
Equation of asymptotes is p = r sin (8, — )
or p =rsin ((2n+1)g—6J:rsin(nn+ g—GJ =r(1"sin (g—eJ
C ot latbC 0" .
or =r(1)"cos or ———————— =(1"rcos6.
P [a(-1)" + ]
Note. -+ If niseven ;then (-1)"=1.
2
Equation of asymptote is (@+8) =rcos® 1ie, rcosb=a+b
If nisodd ; then (- 1)"=-1
B AY/
Equation of asymptote is % =—rcos 0
R AY/
or (@ - b) =rcos® ie, rcos6=(@-b>b).
a—
EXERCISE D
Find the asymptotes of the following curuves :
1L G)r= ea_e - (ii) 126 = a2

@11) r(0% — %) = 2a0.
9 )= 2a o 2a
- Or= 1-2cos 6 @ r= 1+2cos®

(@it) rcos 6 =a sin 6 or r =a tan 0.

Asymptotes

NOTES
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Calculus—I

bl

@) rsinnb =a (@) r sin 20 = a.
(@) r cos 20 = a sin 360 (@1) r sin O = 2 cos 20.
(@it) r cos 6 = a cos 20.

=

5. () r" sin nB = a@" or 1" = @" cosec nO where n is a positive integer > 1.

NOTES . 3a sin 0 cos O
mr=——3—"—3-.
sin” 0 + cos” 0
[Hint. u =0 gives sin® 0 = — cos® 0 i.e., tan 6 = — 1.]
6. (i) r=4(sec 6+ tan 0) (@) r=acosecO+b
(117) r? = a? (sec? 0 + cosec? 0) () r=a+ b cot nd
(V) r=acosec 6 + b cot 0.
7. r(l-e% =a. 8. rlog0=a.
9. () r(n+0)=aqe’ (it) 0 cos 6 = a cos 20.
Answers
1. )rsin(®-1)=a @) 6=0 @@i) rsin 6 =—a.
-2 . (2= 2
2. () rsin (g + e) = ﬁa (if) r sin (? + 6) = Tg (ifi) r cos 0= (- 1)" a.
_m
3. () rsin (9 - m_n) =a D where m is any integer
n

@) — a(_21)n =rsin (n_; - 9}

T
4. @ 2 sin n_11:+3_11: =rsin|:(2n+1)——9:|
2 4 4

2
@) rsin®=2 @@ir) rcos 6+ a=0.
5. (1) 6= m_TI:y where m is any integer i) ﬁr sin (% + OJ +a=0.
n
6. 41+ (=1D"]=(=1"rcosB @) rsin=a

(iii) + a(= 1)" = r sin (”—2“ - e}

. . b : .
(Iv) r sin (9 - m_n} = — where m is an integer.
n n

W a=1)"+b=(-1"rsin 0.

N

rsin 0 +a=0. 8.a=rsin (6-1).

®

() rsinbe™+a=0

(@) rsin @ =a, 2n + 1)7r cos 6 + 2a =0, where n is any inleger.
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Singular Points

12. SINGULAR POINTS NOTES

STRUCTURE

Singular Point

Concavity and Convexity

Point of Inflexion

Criteria for concavity, Convexity and point of inflexion

Concavity and Convexity for Polar Curves with Respect to the pole
Multiple Points

Classification of Double Points

Tangents at the Origin

Working Rule for Finding The Nature of Origin Which is a Double Point.
Another Method of Finding The Position of Double Points

Kinds Of Cusps

Working Rule to Find The Nature of Cusp at the Origin

SINGULAR POINT

Def. A point on the curve at which the curve behaves in an extra ordinary manner
1s called a singular point.

There are two types of singular points:

() Points of inflexion.
(1) Multiple points.

CONCAVITY AND CONVEXITY

Def. Let P be a point on the given curve y = f(x), such that the tangent of P is not
parallel to y-axis.
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Calculus—I Ya Y4

h
y = f(x) T
.
)
NOTES
P
X' » X X » X
Y’ v
Fig. 1 Fig. 2

(1) Concave upwards (or convex downwards) at P if in the neighbourhood
of P, the curve lives P, the curve lies above the tangent at P on both sides.
[See Fig. (1)], and

(11) Concave downward (or convex upwards) at P ifin the neighbourhood of
P, the curve lies below the tangent at P on both sides.

POINT OF INFLEXION

Def. A point on the curve at which the curve
changes from concauity to convexity or vice-versa is
called a point of inflexion.

Since the change from the concavity to
convexity of vice versa is possible only if the curve p
crosses the tangent at a point.

the point of inflexion may also be defined
as a point on the curve at which the curve crosses the

tangent.
X' » X

Note. A point of inflexion is a singular point
(i.e., an unusual point) on the curve, for the tangent does
not usuaully cross the curve, as it does at the point of
inflexion.

Y’

CRITERIA FOR CONCAVITY, CONVEXITY AND POINT OF
INFLEXION

If y = f(x) be a curve, then prove that

2
(1) the curve is concave upwards at a point P on it if d_327 is positive.
dx

2
(11) the curve is convex upwards at a point P on it if d_327 is negative.
dx

(G.N.D.U. 1981)
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(i17) the curve has a point of inflexion at P if

2

d“y
a) —5 =0 and
@ dx®
2 3
b) d_327 changes sign as x passes through P i.e., d’y #0.
dx dx®

Proof. Let P(x, y) be any point on the curve y = f(x). Take a neighbouring point
Q(x + h, y + k) on both sides of P. From Q draw QN 1 OX, meeting the tangent at P to
the curve in R.

YA YA
Q
P R
¥’Q
R
o N M N X o N M N ;
Fig. () Fig. (i)

The equation of the tangent at P(x, y) is
Y-y=/"(0X-x
or Y=y+f'X—-x).
It meets QN, where X = x + h, in the point, so that
RN=Y=y+f'®)[x+ h) —x]
=y +hf’(x) = f(x) + hf "(x)
Also QN = ordinate of Q 1.e., the ordinate cooresponding to the abscissa x + h
=f(x+ h).
Now QN —RN =f(x + h) — f(x) — hf "(x) ..(A)

[Expand f(x + h) by Taylor’s Theorem
with remainder after two terms]

2
= {f(x) +hf(x) +%f”(x + Gh)} —f(x) — hf'(x)

where 0<0<1

h2
=91 ” (x + 0h). (D)

If f ”(x) is continuous and non-zero, and since h is very small, then f” (x + 0h)
has the same sign as f”(x), whatever be the sign of h.
Thus from (1), it follows that the sign of QN — RN depends on f”(x).

() The curve will be concave upwards (or convex downwards) at P [as in
fig. )] if QN > RN (for both A +ve and —ve) i.e. if QN — RN is + ve i.e. if /" (x)

. . d2y
is + ve or if — is positive.
dx

Singular Points

NOTES
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Calculus—1 (11) The curve will be convex upwards (or concave downwards) at P[as in fig.
() if QN < RN (for both h + ve and —ve), t.e., f QN —RN is —ve r.e., if /7 (x)

2
is —ve or if d_327 is negative.

NOTES dx

(it1) For the point of inflexion:

Let f”(x) =0 and f"(x) # 0.

Expanding f (x + h) by Taylor's Theorem with remainder after three terms in
(A), we get

h? h3
QN -RN= {f(x) FRf@) + ) + oy elh)}
— f(x) — hf’(x), where 0 <6, < 1

3
_ % f"(x + 6,h) @) | 7@ =0 (given)

f””(x) is a continuous function of x at P and Y4

7@ =0
f”(x + 6,h) has the same sign as f”” (x) in the
neighbourhood of P.
There is a point of inflexion at P if f "(x)
=0and f'"(x) #0.
Thus we have

2
. . . Yy .
() A curve is concave upwards if 2 s +ve.
X

. . L dPy .
(1) A curve is convex upwards if —32} s — ve.
dx

Remember

o dYy d’y
and (i) At the point of inflexion, —5 =0and ——5 =0
dx dx

Cor. 1. The above result can be generalised.
Thus if f7(x) =f""(x) ...... =f7-1(x) =0 and f*(x) # 0, then
(1) the curve has a point of inflexion at P if n is odd

(11) and the curve is concave upwards or convex upwards according as
f*(x) > 0 or <0, and n is even.

d
Note. In the above investigation, we have assumed that & is finite. If &y becomes

dx dX
2
infinite, then we must find the points of inflexion by considering LZ .
dx
SOLVED EXAMPLES

Example 1. (@) Prove that y = e* is everwhere concave upwards.
(b) Prove that the curve y =log x is convex upwards everywhere.
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Solution. (a) The equation the curve is y = e*.

dy d%y
—— = d —5 =¢
g, ¢ an 22
2
) is always + ve. the curve is concave upwards.
X
(b) The equation of the curve is y = log x (x > 0).
d 1 2 -1
&_ 2 and ay —
dx «x dx? X
d? 1.
d—z =— — is—ve for all values of x.
X x

The curve is convex upwards everywhere.

Example 2. Find the range of values of x for which the following curves are

convaves upwards or downwards:

(@y=x'—6x3+122°+5x+7
@©y=@x*+4x+5)e™

Find also the points of inflexion in each case.

(b) y = 3x° — 40x° + 3x — 20

Solution. (@) The curveis y = x* —6x% + 12x2 + 5x + 7
D - gy 182 + 24+ 5
dx
d%y
i 1262 — 36x + 24 = 12(x% — 3x + 2) = 12(x — D) (x — 2).
X
%y
Now in (=0, 1), F >0 curve 1s concave upwards.
X
dy
In (1, 2), ) <0 curve is concave downwards.
X
d%y
In (2, =), d_2 >0, curve 1s concave upwards.
X
2
Putting d_{AY =0,x=1,2
dx
d®y
Also dx_3 = 24x — 36
d3y
tx=1, —5 =24-36%0
at x I
d3y
at x =2, 2 48 - 36 #0 There are pts. of inflexion at x = 1, 2.
X

From (1), when x=1, y=19 and when x =2, y = 33.

Hence the points of inflextion are (1, 19) and (2, 33).
Note. We can also proceed like this:
2 2

d d
where xis slightly < 1, dijzj > 0; when «xis slight > 1, dijzj <0 -
X X

to—veat x=1 .. thereis apoint of inflexion at x =1, Similarly for x = 2.

(1)

732) changes sign from + ve
dx

Singular Points

NOTES
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Calculus—I (b) The equation of the curve is y = 3x° — 40x® + 3x — 20

d,
= 15y - 12067+ 3
TE d’
NOTES and d—‘; = 60x% — 240x = 60x (v — 2) (x + 2)
x
2
In (— o, — 2), 3—32} is—ve, .. curveisconcave downwards.
x
2
In (-2, 0), d_32/ is +ve, .. curve is concave upwards.
x
d2
In (0, 2), d_jzl is—ve, .. curve is concave downwards.
x
d2
and 1In (2, =), _32’ is +ve, .. curve is concave upwards.

X
2
Putting d_{AY =0,x=0=+2.
dx

3
Also d_%} = 180x% — 240 which does not vanish for x = 0, + 2
x

there are points of inflection at x =0, + 2.
From (1), when x =0, y = — 20;
When x=— 2 y =198 and when x =2, y = — 238.
Hence the points of inflexion are
0, —20), (-2, 198) and (2, — 238).
(¢c) The equation of the curve is y = (x? + 4x + H)e™

dy . .
I = @?+4x+5). e (=1 +e@2x+4)
=(—a?—4x—-H+2x+Der*=— 2+ 2+ e *
d2
_y - 2 —X —X
and PRl x>+ 2x+ De*(—1)— (2x+ 2e
=2 +2c+1-2x—2e “=(@?—1e™
=x+1) (x—1e™
d%y
In (=0, — 1), d_2 >0 .. curveis concave upwards.
x
d%y
In (-1, 1), ) <0 .. curveis concave downwards.
x
d%y
and in (1, o), d_2 >0 .. curveis concave upwards.
x

2
Putting d—‘; =0, x=%1.
X

d%y . _
— changes sign at x =+ 1 and — 1.
dx
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there are points of inflexion at x = +1.
When x=-1, from (1), y=(1 —4+ 5e! =2e

1
and when x=1,from (1),y=(1+4+5)e!=10e!= _0
e

Hence the points of inflexion are (— 1, 2¢) and (1, I?OJ
Example 3. Find the value of x for which the curve
54y = (x + 5)2 (x° - 10)
has a point of inflexion.
Solution. Equation of the curve is
by = (x + 5)2 (x* — 10)

54Z—y=(x+ 5)2 (3x2) + 2(x + H)(x® — 10)
X
=(x+5) [3x2 (x + 5) + 2(x® — 10)]
= (x + 5) [3x® + 15x2 + 2x° — 20]
= (x + 5) [bx® + 15x2 — 20]
=5(x+5) (x®+ 3x2 —4)
2
or ﬁ.d—y=(x+5)(3x2+6x)+(1)(x3+3x2—4)
5 dx?
=3+ 212+ 30x + &% + 3x2 — 4
= 4x° + 24x% + 30x — 4
Ly o 12x% + 48 +‘30—§22+8 +5
dx3_5[x xs]—g[x x + 5]
%y
For points of inflexion, —5 =0
dx
or 463+ 24x2+ 30x—4=0 or 2x°+ 12x2+ 15x-2=0
-8+ .,/64
or (642 @%+8r—1)=0 - y=_g _SrJ64+8 V46+8
~4+3\2
=—2 or
2
When x =—2 ﬁ—§[8—16+5];ﬁ0
) ’ dx® 9
1 3
Whenxz—[—4i3\/§], d_y¢0

2 dx®

Hence points of inflexion are given by

x=-2, %(—4i3\/§)‘

Singular Points

NOTES
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Calculus-1 Example 4. Show that origin is a point of inflexion of the curve a™ 1.y =x™if
m is odd and greater than 2.

Solution. The equation of the curve is @™~ ! .y = x™.

NOTES x™
or y=—7
a
d_y: m xm—l‘ dzy :m(m_l) m— 2
dx am—l o ’ dx2 am—l
By mm-1)(m-2) X dry _ m!
= XS -2 =
de am—l cr ’ ™ am—l
2
For points of inflexion, d—z =0
dx
m(m —-1)
or (m—_l.xm*2=0 or x"~%2=0
a
d2 d3 dm—l m
or x=0,—32}=—33}= ...... = _31’ =Oandd—y¢0‘
dx dx dx™ dx™
Thus there is a point of inflexion at x = 0 if m is odd and no point of inflexion if
m is even.
Hecne, the origin is a point of inflexion if m is odd and > 2.
Example 5. Find the points of inflexion on the curve
x=a(20 -sinb), y=a(2-cos0)
d
Solution. Here dx _ a2 —cos 0) and & a sin 0
do do
dx
dy _do__sin®
de dy 2-cosH
do
d’ _d( sin® | do
dx? do|2-cosO | dx
_ (2—cos6)cos6—sinE)(sine)>< 1
(2 - sin 6)* a(2 - cos 0)
B 2 cos 0 (cos® 0 + sin? 0) _ 2cosB-1
a(2 - sin 0)? a(2 — cos )
: : . d? -
For points of inflexion, —32} =0 or Lﬂls =0
dx a(2 — cos 0)
1
which gives cos0===cos & . 0=2nm+ .
2 3 3
where n is any integer.
2
When 0 passes through each of these values, % changes sign. Hence there
are points of inflexion corresponding to every value of 6 given above.

240  Self-Instructional Material



The co-ordinates of the points of inflexion are

{a[mni%i@]ﬁ_ﬂ

2 2
‘ s sin (2n1‘c + g) =sin (i

EXERCISE -1

N—
I
H+
w|®

wl|a

1. Discuss the concavity and convexity of the curve
y = (sin x + cos x)e*
when 0 <x <27,
Find also the points of inflexion.

2. Find points of inflexion of the following curves:

(@) xy = a? log (yj () x= (log y)*.
a

3. Show that the line joining the points of inflexion of the curve y?(x — a) = x*(x+ a) substends
an angle of n/3 at the origin.

4. Show that points of inflexion of the curve

y=x-a)x-0b)

lie on the line 3x + a=4b.

5. For the curve y = x% + bx? + ¢, where b < 0 show that the point of inflexion is equidistant
from the maximum and minimum points.

6. Show that abscissae of the points of inflexion on the curve y* = f(x) satisfy the equation

[ @]* = 2/(x) . [ ().

Answers

1. The points of inflexion are (z, \/ﬁe“/‘lj and (in, - \/§e5“/4j .

2. (a) The point of inflexion is (Zae"3/2, ae3/2j

(b) The points of inflexion are (0, 1) and (8, €?).

CONCAVITY AND CONVEXITY FOR POLAR CURVES
WITH RESPECT TO THE POLE

Let P(r, 6) be any point on the curve r = f(6).
Draw ON L on the tangent at P and let ON = p.

P P
r r
0
0<< > o<l >
X X
Pl P
N N

Singular Points

NOTES
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Calculus—1 Then the curve is said to be concave or convex with respect to O according as p

increases or decreases with the increase in r.

. . do .
i.e., according as %2 is+ve or —ve.

NOTES dr
Now we know that

RIS L(ﬂf
p2 r2 r4 do
Different both sides w.r.t. to r, we have

_2 dp_ 2 4(er2 1 (drj d* do
- + 2

pz'dr P do rt %'dQQ'dr
1dp_1_ 2 (dr)_1 d
or o2 dr 2 2 do )

3 2 2
d—p:p—{r2+2. ﬂ —r.ﬂ}
dr 5 do do?

Now sign of (;—p is the same as that of the expression

r
2 2
rZ+ 2 ﬂ —r.ﬂ
do do?
dr

2
Hence the curve is concave or convex at P(r, 0) according as r? + 2(5) -r.

Zr . .. .
—— 18 positive or negative.
de?

Cor. Condition for point of inflexion.
There is a point of inflexion at P, if
. arY  d? a2 1
@) r’ + Z(d—gJ _rd_(-)lz. =0oru+ d_Gl; =0, where u = -
2
(11) the experssion u + d_Gl; change sign in passing through P.

SOLVED EXAMPLES

Example 6. Determine whether the spiral r cosh © = a is concave or convex
towards the pole.

Solution. Given curveisrcosh O =a or r=asech0

ﬂ =—asech 0. tanh 0
do
dzr 2
w = —alsech 0. sech? 6 —tanh 0 . sech 0 . tanh 0]

= —alsech® 6 — tanh? 0 . sech 0]
= —a sech 0. [sech? 6 — tanh? 0]
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ey ( ﬂ )2 . d_zr Singular Points
do 46>
= a? sech? 0 + 2a? sech? 0 . tanh? 0 + a? sech? 0 . (sech? 6 — tanh? 0)
= a? sech? 0 + 2a? sech? 0 . tanh? 0 + a? sech* 0 — a? sech? 6 tanh? 0 NOTES

=a?sech? 0. [1 + tanh? 0 + sech? 0] = 2a?. sech? 8 =+ ve.
|- sech?0+tanh20=1

Hence the curve is concave towards pole.

Example 7. Show that the curve r/0 =a has a point of inflexion at a distance of
J2a from the pole.

Solution. Given curve 1s r4/6 =a ()

) 1
Puttingr= —, we get u = —
u a

1 1
u, — — . —F—
1" a 28

= i(_l) a2 1
27 9q| 2 4a0:/0
1

For points of inflexion, u+u, =0 ie —-— =0

? a  4a 60

40°-1=0 02 ! or 0=+ !

f— = I‘ = — = et

0 4 2

1
When 0= g = 2Ja
1 .. .
and when 6 = — =, ris imaginary.

Hence point of inflexion is at r = V2a .

Example 8. Show that the points of inflexion on the curve r = a0" are given by
r=al-nmn + 1"

Solution. The equation of the given curve is r = af” (D)
2
% =naq'~ ' and ol nm—1Daq 2
For the points of inflexion, 1% + 2(2)2 - rd_Qr =0
’ do do?
or a’0® + 2n2%a? 022 —a0” . n(n—-1) ad"~2=0
or a’0® 202+ 2n® —nn - 1] =0
or a?0?"2[02 +n?+n]=0.
Either0=0 or 0*+n?+n=0

When 6 = 0, all the derivatives will become zero. .. 6 = 0 cannot give any
point of inflexion.

Thus, 62+n2+n=0 or 2=—n@+1) .. O=[-nn+ 1]

From (1), r = a®" = al[- n(n + 1)]"2

Hence the points of inflexion are given by r = a[ — n(m + 1)]"2.
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Calculus—I

NOTES

MULTIPLE POINTS

Def.: A point on the curve through which more than one branches of the curve
pass is called a multiple point.

Double Point (Def.)

A point on a curve is called a double point if two branches of the curve pass
through it.

There are in general, two tangents at a double point which may be real and
distinct or real and coincident or imaginary.

Triple Point (Def.)

A point through which three branches of the curve pass is called a triple point.

Multiple Point of rth Order (Def.)

If through a point on the curve, r branches of the curve pass, then that point is
called a multiple point of rth order.

In general, r tangents (real and distinct, coincident or imaginary) can be drawn
through a multiple point of order r.

CLASSIFICATION OF DOUBLE POINTS

There are three kinds of double points. YA

Node

Def. A node is a point on the curve through which
pass two real branches of the curve, and the two tangents
at which are real and distinct. Thus P is a node.

Cusp

Def. A double point on the curve through which two real branches of the curves
pass and the tangents at which are real and coincident is called a cusp.

YA Y4

)

Thus Q is a cusp.
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Conjugate Point or Isolated Point Y4 Singular Points

Def. A conjugate point or an isolated point on a
curve is a point in the neighbourhood of which there are
no other real points of the curve. NOTES

Thus R is a conjugate point. The tangents at a

conjugale point are generally imaginary, but sometimes
they may be real. 0

3 4

SOLVED EXAPLES

Example 9. Find the nature of the origin on the curve a*y? = x*(x? — a?).

Solution. Clearly the curve passes through the origin. The equation of the curve
can be written as

x? 2 2
y::t—z X —a
a

Thus for small values of x # 0, + ve or —ve, y is imaginary.

In the neighbourhood of (0, 0), no other points of the curve lie and hence
origin is a conjugate point.

1 _
Now @y _, %[Zx«/xz—az +x2.§.(x2—a2)1/2.2x}

dx a
1 3
=+ — 2x\/x2 -a? +x—
a x2 - qa?

= 0, at the origin.
Equation of the tangent at the origin (0, 0) is
Y-0=0X-0) or Y=0

which is real, showing that the tangent may be real at a conjugate point.

Important Note

The determination of the nature of double points depends basically on the nature
of two branches of the curve passing through it, and not on the tangents to the curve at
that point. Generally, when the tangents at a double point are real, the branches are
also real. But there are cases, when the tangents may be real, yet the branches may be
imaginary. Thus in such cases our test through the nature of tangents will lead us to
wrong results.

TANGENTS AT THE ORIGIN

Show that if a curve passing through the origin be given by a rational
integral algebric equation, the equation of the tangent (or tangents) at the
origin is obtained by equating to zero the lowest degree terms in the given
equation of the curve.
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Calculus—1 Proof. Let the general equation of rational, algebraic curve of nth degree, passing
through the origin, be

(@ +by) + (@x? + byxy + cy?) + ... +(6,_ )+(S,)=0 (D)

where S denotes the sum of terms of the nth degree in x and y and there is no constant
NOTES terms

Let P(x, y) be any point on the curve near the origin O.

Slope of chord OP is &
x

When P — O, the chord OP — tangent at O

x—>0\ x
y—0

Slope of the tangent at O is Lt (Z) = m, say.

Equation of the tangent at O is

Y= Lt [Z]X=mX (2
x—0\ x

Case I. When m is finite i.e., y-axis is not the tangent at the origin.
(@) Let us suppose b, # 0.
Dividing both sides of (1) by x, we get

(a1+bllj+(a2x+b2y+czy.%j: _____ =0
x

Whenx—)(),y—)O,thenLtzzm
x

a,+bm=0, - allother terms vanish.

or Z—a—l,whereb #0 ..(3)
bl 1

2) becomes Y=— L X or aX+b,Y=0
bl 1 1

or taking x and y as current co-ordinates, a,x + b,y = 0, which could have been obtained
by equating to zero the lowest degree terms in (1).

@) If b, = 0, then from (3), a, = 0.
Let us suppose that b, # 0, ¢, # 0.
Equating (1) becomes

(@x% + byxy + ey + (@0 + box? y + ... Y+ =0
Dividing both sides by x?, we have
2
{a2x+62%+02(%)}+(a3x+b3y+ ..... )+ =0
Letx — 0,y — 0, then Lt Y =m
x
a,+b,m+c,m*=0 - the other terms vanish. )]

This equation, being a quadratic in m, has two values of m and, therefore, there
are two tangents at origin.
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But X 5
ut x-m N 6))

where m is root of (4).
Eliminating m between (4) and (5), we have
a, X%+ b, XY +¢,Y? =0
or taking x, y as current co-ordinates,
a,x? + byxy + ¢,y =0
which could have been obtained by equating to zero the lowest degree term of (1).

If a, = b, =a,=b, =c, =0, it can be similarly shown that the equations of
tangents, at the origin, are obtained by equating to zero the terms of lowest degree in
the equation of curve; and so on.

Case I1. When Y-axis is tangent at origin.

Lt (Z), being the trignometrical tangent of the inclination of the tangent at
0
Y30

the origin to y-axis, is zero.

dividing the equation of curve by y and supposing a, # 0, and making x and
y both tend to zero, we find b, = 0.

Hence equation of curve now being
a,x + (ax% + byxy + cy?) + ... =0,
we observe that this theorem is still true in this case also. This proves the proposition.

WORKING RULE FOR FINDING THE NATURE OF ORIGIN
WHICH IS A DOUBLE POINT.

1. Find the tangents at the origin by equating to zero the lowest degree terms in x
and y of the rational, algebraic equation of the curve. If origin is a double point, then we
shall get two tangents which may be real or imaginary.

2. If two tangents are imaginary, then, origin is a conjugate poindt.

3. If the two tangents are real and distinct, then origin s a node or a conjugate
point.

To be definite, examine the nature of curve in the neighbourhood of origin. If the
curve has real branches through the origin, then it is a node, otherwise a conjugale
point.

4. If two tangent are real and coincident, then origin is a cusp or a conjugate
point. To be definite was test the nature of curve in the neighbourhood of the origin as
above in (3).

Test for Nature of Curve at Origin

In case the tangents at origin are y> = 0, solvethe equation of curve for y,
neglecting all terms of y containing powers above second. If the values of y, for small
values of x, are found to be real, the branches of curve through the origin are real,
otherwise imaginary.

Singular Points

NOTES
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Calculus—1 If the tangents at origin are x> = 0, solve the equation for x and proceed as
above.

The students must not that while neglecting higher powers of x and y, the reduced

equation may not coincide with that of the tangents or the two branches of curve may
NOTES not coincide.

If the tangents at origin are x> = 0, solve the equation for x and proceed as
above.

The students must note that while neglecting higher powers of x and y, the
redued equation may not coincide with that of the tangents or the two branches of
curve may not coincide.

If we are to study the nature of double point, which is not origin, we transfer the
origin to the double point, say, (h, k) and proceed as above.

SOLVED EXAMPLES

Example 10. Find the nature of origin on the following curves:
@) x* —ax?y +axy®? +a®y? =0 @) y2 = 2x% + xty — 2%,
Solution. (i) The given equation of the curve is
x*—ax?y + axy? +a?y?=0
Equating to zero, the lowest degree terms, the tangents at the origin are given
by a*?=0 or »*=0 te, y=0,y=0.

There are two real and coincident tangents at the origin.

Origin is either a cusp or a conjugate point.
From (1), ay*(x+a)—ax’y+x*=0

ax? + \/a2x4 —4ax*(x +a)

or y=

2a(x +a)
B ax? + xZ\/— 4ax - 3a®
2a(x +a)
For small values of x # 0, (— 4dax — 3a?) is — ve .. y is imaginary in the

neighbourhood of origin.

Hence origin is a conjugate point.

(i1) The equation of the curve is  y2 = 2x%y + x*y — 2x* LD

Equating to zero, the lowest degree terms, the tangents at the origin are given
by y*=0 or y=0,y=0.

There are two real and coincident tangent at the origin.

Origin is either a cusp or a conjugate point.
From (1), y%2—x%y(2+x9) + 2x*=0.

222+ a0 k24 2%) - 8t
B 2

x2(x? +2) J_raclex4 +4x% -4

2

Solving for y,
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When xis small # 0, x* + 4x? — 4 is —ve, so that y is imaginary in the neighbourhood
of origin.
Origin is a conjugate point.

Note. These are examples of the case when the double point is a conjugate point, even
though the tangents are real.

Example 11. Find the nature of the origin for the following curves:

@) v =x% + ax? @) x%(x —y) +y2=0.

Solution. (i) The equation of the curve is

v = x% + ax? 0

Equating to zero, the lowest degree terms in (i), the tangent at the origin are
given by =0 or x=0,x=0.

Since the two tangents are real and coincident, the origin is a crusp or a conjugate
point.

Neglecting % in (i), we have ax2=y3 or x==+ |2
a
Supposing a > 0, x is real for small + ve values of y.
Hence the two branches of the curve near the origin are real and so the origin is
a cusp.
(i1) The equation of given curve is x° —x%y + y? =0 LD
Equating the zero, the lowest degree terms, the tangents at the origin are y* =0
ory=0,y=0.
the two tangents are real and coincident, .. originis acusp or conjugate
point.

Solving (1) for y, we have

x? £ 4Jxt - 4aB x? + «/x3(x -4)
y = =
2 2
When x is small and — ve, x*(x — 4) is + ve and so y is real in the neighbourhood
or origin. [Note that y is imaginary for x > 0 near the origin].

Thus there are two real branches of the curve near the origin (for < 0),
Origin is a cusp.
Example 12. Show that (3, 1) is a cusp on the curve
(y-1)?=(x-3)°
Solution. The equation of the curve is

(y—1%=(x-3)> (1)
Shifting the origin to (3, 1) [by putting x =X+ 3, y =Y + 1], (1) reduces to
Y+1-12=X+3-3)°% or Y2=X3 (2

Equating to zero the lowest degree terms, the tangents at the new origin are
given by
Y2=0, or Y=0,Y=0
Since the two tangents are real and coincident, .. new origin is a cusp or
conjugate point.

From (2), Y = + X4/X , which gives real values of Y for small + ve value of X.
Hence, real branches of the curve exist in the neighbourhood of the new origin.

The new origin i.e., the point (3, 1) is a cusp.

Singular Points

NOTES
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Calculus—I Show that the Necessary and Sufficient Conditions for any Point (x, y)
on f(x, y) = 0 to be a Multiple Point are that f (x, y) =0, fy (x,y)=0

The equation of the curve is f(x, y) =0

NOTES Differential (1) w.r.t. x, treating y as a function of x, we have
of of dy
4 +2X. == =0 L2
ox dy dx @

where Z_y gives the slope of the tangent at the point P(x, y).
X

If P(x, y) is a multiple point, there must be at least two tangents which may be
real, coincident or imaginary.

Thus Z_y must have at least two values at (x, y). But eqaution (2) is a first
X

degree equation in Z_y and is satisfied by at least two values of Z_y , which it possible
X X
only if it becomes an identity.

Thus o =0 and o =0.
ox dy
Also (x, y) lies on the given curve f(x, y) = 0.
The necessary and sufficient conditions for any point (x, y) on the curve
f(x, y) =0 to be a multiple point is
i =0 and % = ..(3)
ay

ie. f(x,y)=0 and fy(x, y) =0.
Hence the result.

CLASSIFICATION OF DOUBLE POINTS

The stmultaneous solutions of equations (3) which also satisfy the equaltion (1)
give the positions of double points or multiple points on the curve.

Differentiating (2) w.r.t. x, we get
2 2 2 2 2
Of ,Of dy (OFf Of dy|dy o dy _
dyox gy? dx

ox2  oxdy dx “dx 9y dx?

2 2
But ﬂ = ﬂ and also at the double point
0xdy  dyox
of _ o _
o 0 and % =0

The above equation reduces to

2 2 2 2
a_f(d_y) s 0f Ay O (4
oy? dx oyox dx x>

which is quadratic in Z_y and gives the two slopes of the tangents at the double point
X

(x, ).
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The tangents at (x, y) will be real and distinct, real and coincident or imaginary
according as the roots of (4) are real and distinct, equal or imaginary for which

2, \2 2 2
4(afJ —4ﬂ.ﬂ>0,20 or <0

dxdy ox?  oy?
2,2 42 2

or of —ﬁ.ﬁ>0,20 or <0
0xdy ox?  oy?

Hence in general, a double point will be a node, cusp or a conjugate poindt,
according as

o 3y’ dydx
point of order higher than two.

20 \? 2 2
f o“f of .
J >, or < _—-.— atthat point. ..(5)
oxdy ox~ Jy
2 2 2
Note. 1. If of _ ﬁ _97 =0 at the point (x, ¥), then the point (x, y) will be a multiple

Note 2. The condition (5) is not a sure test for the node, cusp or a conjugate point. This
in fact is the condition for the two tangents at the double point to be real and distinct, coincident
or imaginary. The result may sometimes lead to the wrong conclusion. [See Example I below]

Working Rule for Finding the Position and Nature of Double Points of
the Curve f(x, y) = 0.

1. Find the position of double points from the equations

)

% = ,—f =0 and f(x,y)=0.

ox dy

2. Find the nature by shifing the origin to the double points and then testing the
nature of tangents and the existence of the curve in the neighbourhood of new origin.

SOLVED EXAMPLE

Example 13. Find the position and nature of the double points of the following
curuves:

(@x+x2+y?—x—4y+3=0

D) 25 +y°) — 332 +y2) + 12x—4=0

© x> +3%y -4yl —x+y+3=0.
Solution. (a) The equation of the curve is

[, )=xd+a2+y?—x—4y+3=0 (D)
g—£=3x2+2x—1=(3x—1)(x+1)
of
— =2y —-4=2(y-2 .2
% y vy—2) 2)
of _ .

Now for the double points i 0 =0
x

oy

Singular Points

NOTES
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Calculus—1 of 1
— =0gives Bx—-1)(x+1)=0 .. x=—-or -1
ox 3
of .
and — =0gives 2y —2)=0 .. y=2
NOTES dy

The possible double points are (%, 2) and (- 1, 2).

Of these, only (- 1, 2) satisfies the given equation (1) of the curve.
Hence (- 1, 2) is the only double point of the curve.
Shifting the origin to (- 1, 2) [by putting x =X —1and y =Y + 2 in (1)], the
equation (1) reduces to
XD+ X -2+ +22-X-1D)-4Y+2+3=0
or X2-3XZ+3X-1+X2-2X+1+Y2+4Y+4-X+1-4Y-8+3=0
or X3-2X2+Y%2=0 ..(3)

The tangents at the new origin are given by — 2X2+ Y2 =0or Y = + +/2X . Since
the two tangents are real and distinct, new origin is a node or a conjugate point.

Solving (3) for Y, we get Y =+ X/2 -X
Now for small values of X, + ve or —ve, Y is real. .. Two real branches of the
curve pass through (- 1, 2). Hence (— 1, 2) is a node.
(b) The equation of the curve is
[, ) =20+ 9% —30Bx2+y2) + 12x—4=0 (D)

of 2 2
o =6x*—18x+12=6(*-3x+2)=6(x -1 (x-2) | ...(2)

6y 6y =yiy— 1)
dy Y y = by

Now for the double points, i =0, % =0
0x oy

g—f =0givesb6(x—1) (x—2)=0 .. x=1or?2.
X

%ZOgiveSGy(y—l)ZO s y=0or 1l

Thus the possible double points are (1, 0), (2, 0), (1, 1), (2, 1)

Of these only (1, 1) and (2, 0) satisfy the given equation (1) of the curve and
hence these are the only double points.

Nature of the point (1, 1).

Shifting the origin to the point (1, 1) [by putting x = X + 1, y = Y + 1], the
equation (1) transforms to

2X+ D3+ 2+ 12 —9X+ D? -3 + D?+ 12X+ 1) -4=0
or  2(X%+3XZ+3X+ 1)+ 2(Y2+3Y2+3Y + 1) —9X2+ 2X + 1)
—3Y2+2Y+ 1D+ 12X +12-4=0
or 2X3 +2Y2 —3X%2+3Y2=0 ..(3)
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Equating to zero the lowest degree terms in (3), the tangents at the new origin Singular Points
are 3Y2 -3X?2=0 or Y==X

Since these tangents are real and distinct, the new origin is a node or a conjugate

point.

Solving (3) for Y(and neglecting Y? and higher powers of Y), we get NOTES

/ 2
3Y2=3X2-2X? or Y=1X 1—§X‘

For small values of X, + ve or — ve, Y is real. Hence two real branches of the
curve pass through the new origin .. (1, 1) is a node.

Nature of the point (2, 0).

Shifting the origin to the point (2, 0) [by putting x = X + 2, y = Y + 0], the
equation (1) transform to

2K+ 2% +2Y% —9X +2)2-3Y2+12X+2)—-4=0

or 2X% +6X2+ 12X + 8) + 2Y? —9(X2 +4X +4) - 3Y2+ 12X +24-4=0
or 2X3 4+ 2Y2 + 3X2 - 3Y2=0 ..(4)

Equating to zero the lowest degree terms, the tangents at the new origin are
given by

3X2-3Y2=0 or Y?2=X? . Y=%X

Since the tangents are real and distinct, the new origin is a node or a conjugate
point.

Solving (4) for Y(and neglecting Y? and higher powers of Y), we get

2
3Y2=3X2+2X® or Y=¢% X,/l—gx

Now for small values of X, + ve or —ve, Y is real.

Two real branches of the curve pass through the new origin, i.e., the point
(2, 0). Hence the point (2, 0) is a node.

Thus the curve has two nodes at (1, 1) and (2, 0).
(¢) The equation of the curve is

[, y)=x3+3x2y -4y —x+y+3=0 (1)
of o
I _ 40 1. L a9 9.2
™ 3x* + bxy — 1; dy 3x4 — 12y + 1 ..(2)
Now for the double points, i =0, % =0
ox dy
o =0gives 3x*+6xy—1=0 (3
ox
I =0gives 3x?—-12y°+1=0 ..(4@
dy
1 - 3x2 ..
From (3), y= 6 putting in (4), we get
22 (1-322)"
Ba? - 12 (1‘3’6 J +1=0 or 3?— — 2 4+1=0
6x 3x
or 9x* — (1 +9x* —6x2) + 3x2=0
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1 1

9?—1=0 == x=*—

or X or ¥f=g or x 3

1
NOTES Putting this value of x in (4), 3(§j —1292+1=0

1 4 1 1
1202= = +1== - y'==ory=t=
or v =3 3 yi=gory 3

Hence the possible double points are

L1y (1 1) 11 and(_l,_l)‘
3°3)13 3 3 3 3 3

Out of these, none satisfies the equation (1). Hence there is no double point.

Example 14. Find the position and nature of the double points of the following
curuves:

(@x°—y?—7x2+4y+15x—13=0
b) x?— 4y — 12y2 - 82+ 16 =0.
Solution. (@) The equation of the given curve is

[, y)=x>—y? —Tx2+4y+15x—-13=0 (1)

of of
L =3 - 14x+ 15 d —=-2y+4
% X X an Yy

For the double points a—f =0, % =0
ox ay

9
% =0gives 3a? —14x+15=0 or (x—3)Bx—-5)=0

x=3, é
3
of .
— =0gives -2y +4=0 .. y=2
dy

The possible double points are (3, 2) and (g, 2)

But out of these only (3, 2) satisfies the given equation (1).
(3, 2) is the only double point.
Nature of the point (3, 2).
Shifting the origin to the point (3, 2), [by putting x =X+ 3,y =Y + 2].
(1) transforms to
X+3)P—Y+22-TX+3)2+4N +2)+ 15X +3)—-13=0

or X3+ 9X2+ 27X +27) - (Y2 +4Y + 4) —T(X? + 6X + 9)
+4Y +8+ 15X +45-13=0
or X3+ 2X2-Y2=0 (2

Equating to zero the lowest degree terms, the tangents at the new origin are

given by 2X2—Y2=0 or Y=t v2X.
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Since the two tangents are real and distinct, .. new origin is a node or a
conjuate point.

Solving (2) for Y, we get Y =% X\/m
which gives real values of Y for small enough values of X, + ve, or —ve.
Real branches of the curve exist in the neighbourhood of the new origin.
new origin i.e. the point (3, 2) is a node.
Hence the given curve has a node at the point (3, 2).
(b) The equation of the curve is

flx, y) =x* — 4y — 1292 —8x2 + 16 =0 (1)
oA _, 5 - 2
% 4x° — 16x = 4x(x* — 4)
af
and — =—12y? - 24y = — 12y(y + 2)
ay
Now for the double points, o =0 and I =0
ox oy
o of

™ 0 gives x =0, + 2 and g =0givesy=0, — 2.
The possible doubles points are (0, 0), (0, — 2), (2, 0), (2, — 2), (— 2, 0) and
2 —2).
Out of these, only (0, — 2), (2, 0) and (- 2, 0) satisfy the given equation (1).
Nalure of the point (0, — 2)
Shifting the origin to the point (0, — 2),
[by putting x =X+ 0=X, y =Y — 2], (1) transforms to
X4 4(Y 23 —12(Y - 2)2 - 8X2+ 16 =0

or X443 -6Y2+12Y —8) — 12(Y2—4Y + 4) —8X?2 + 16 =0

or X* —4Y3 + 12Y2 -8X2=0 (2
Equating to zero the lowest degree terms, the tangents at the new origin are

given by 12Y2-8X2=0 or Y=+¢ \/gx

which are real and distinet. .. The new origin is a node or a conjugate point.

Solving (2) for Y (neglecting Y?), we get 12Y? = X?(8 — X?)
or 243Y =+ X 8- X2

For small value of X, + ve or —ve, Y is real. .. Real branches of the curve
exist in the neighbourhood of the new origin.

Hence the new origin i.e. the point (0, — 2) is a node.

Nature of point (0, — 2)

Shifting the origin to the point (2, 0),

[by puttingx =X+ 2, y=Y + 0=Y], (1) transforms to

(X+ 2 4Y? —12Y2 - 8(X + 22+ 16=0

Singular Points

NOTES
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Calculus-1 or  (X*+8X%+ 24X2 + 32X + 16) — 4Y? — 12Y2 — 8(X2 + 4X + 4) + 16 =0
or X4+ 8X7 —4Y? + 16X2— 12Y2=0  ..(2)

Equating to zero the lowest degree terms, the tangents at the new origin are

iven b
NOTES given by

12Y2-8X2=0 or Y=4¢ \/gx

which are real and distinet. .. The new origin is a node or a conjugate point.
Solving (2) for Y(neglecting Y?), we get 12Y2 = X2(8 — X?)

or 2J3Y =+ 8 -X2

For small values of X, +ve or —ve, Y is real. .. Real branches of the curve
exist in the neighbourhood of the new origin.

Hence the new origin i.e. the point (0, — 2) is a node.
Nature of the point (£, 0)

Shifting the origin to the point (2, 0), [by putting x =X+ 2, y=Y +0=Y], (1)
transforms to

(X +2)4—4Y? —12Y2 —8(X + 2)2+ 16 =0
or (X4 + 8X5 + 24X2 + 32X + 16) — 4Y? — 12Y2 - 8(X2+ 4X + 4) + 16 =0
or X4+ 8X3 — 4Y% + 16X2 — 12Y2 =0 .3

Equating to zero the lowest degree terms, the tangents at the new origin are
given by

4
16X2 -12Y2=0 or Y=+ \/;X

which are real and distinet. .. The new origin is a node or a conjugate point.
Solving (3) for Y(neglecting Y?), we get
12Y2 = X* + 8X3 + 16X2 = X2(X + 4)?

or Y=+ L X (X +4). Thus Y is real for all values of X.
243

Real branches of the curve exist in the neighbourhood of the new origin.
Hence the new origin i.e., the point (2, 0) is a node.

Similarly (- 2, 0) is a node. [Left as an exercise for the student.]
EXERCISE - 2
2 a
1. Show that the curve r=a. 3 has a point of inflexion at r = 5
0“ -1

2. Find the nature of the origin for the following curves:

@) y*(a@? + x2) = x2(a? — x?) @) x*+ y*—4axy =0

a? b

Gil) & -2 =1,
xZ y2
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3.

o

i) Show that the curve y2 = bx sin ¥ has a node or a conjugate point at the ori in,
jug p g
a

according as @ and b have like or unlike signs.

(it) Show that the curve y2 = 2x sin x has a node at the origin.

(i11) Show that the curve y? = bx tan % has a node or a conjugate point at the origin,
a

according as @ and b have like or unlike signs.

(tv) Show that the origin is a node, a cusp or a conjugate point on the curve y? = ax? + bx?,
according as a is positive, zero or negative.

Find the position and nature of the double points on the curve a*y? = x*(2x* — 3a?).
Find the position and nature of the double points on the following curves:

(@) y* = 2x%y + 3y + «° ®) ¥*+y>—3axy=0

(0) x(x* + ) —ay® = 0.

Find the position and nature of the double points on the following curves:

() (=02 +a8=0 (K.U. 1986 ; M.D.U. 1982, 89 S)
(i) (x—y)2 + 4 =0, (K.U. 1981 S)
() Prove that the curve y? = (x— a)? (x— b) has at x = a, a conjugate point if @ < b, a node
if @ > b and a cusp if a = b. (D.U. 1987)
Find the position and nature of the double points on the following curves:

@) (x—2)2 = y(y — 2. (K.U. 1984, 89)
() y2=(x—1) (x—2)2 (D.U. 1990; M.D.U. 1985)

© (y—2)? = x(x — 1)2.
Show that each of the curves
(xcos o.—y sin o0 — b)® = ¢(x sin o + y cos o)2

for all different values of o, has a cusp; show also that all the cusps lie on a circle.

Answers
(1) node. (1) Origin is a node.
(111) Node
Origin is a conjugate point and nol a cusp.
(a) The given curve has a cusp at the origin.
(b) The curve has a node at the origin.
(¢) The given curve has a cusp at the origin.
(1) The origin is a conjugate point.
(i1) Conjugate point
(@) node at the point (2, 1).
(b) node at (2, 0).
(¢) node at (1, 2)

ANOTHER METHOD OF FINDING THE POSITION OF
DOUBLE POINTS

Let (h, k) be the double point on the curve f(x, y) = 0. Transfer the origin to (h, k)

by the substitution x =X + h, y =Y + k, and let the transformed equation be F(X, Y)
=0. Since the new origin is a double point, the constant term and the terms of the first
degree in F(X, Y) = 0 must be absent.

Singular Points

NOTES
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Calculus—I .. Equating to zero the constant term, co-efficients of X and Y separately to
zero in F(X, Y) =0, we get three equations in (h, k). Solving any two of these equations
for h and k and if these values of h, k also satisfy the third equation, then (h, k) is a
double point.

NOTES

SOLVED EXAMPLES

Example 15. Determine the position and character of the double points on the
following curves:

@yly—6)=x*(x-2°-9 b) 2y +x+1P°-41-x)0°=0
© (x+y)’ V2 (y-x+2?=0.
Solution. (@) The given equation of the curve is
flx, ) =x2(x -2 —y(y —6) —9=0 ..(D)
a—i =2x(x — 2% + 3(x —2)? . 22 =x(x - 2)? [2(x — 2) + 3x]
=x(x —2)? (bx —4)

of
— =—2y+6
dy
For the double points, i =0, %ZO‘
0x oy
o =0givesx(x—2)2(BGx—-4)=0 or x=0, 2, 4
ox 5
%Z()gives—2y+6=0 or y=3.

The possible double points are (0, 3), (2, 3) and (%, 3) )

Out of these, only (0, 3) and (2, 3) satisfy (1).
(0, 3) and (2, 3) are the only double points.
Character of (0, 3).

Shifting the origin to (0, 3) by putting x =X+ 0, y =Y + 3, the given equation (1)
transforms to

N+3) Y +3-6=X3X-23-9

or Y2-9=X2(X-22-9 or Y?=X?(X-2)° .. (2)
Equating to zero, the lowest degree terms, the tangents at the new origin are
Y? + 8X? =0, which are imaginary. .. new origin i.e.(0, 3) is a conjugate point.

Character of (2, 3).

Shifting the origin to (2, 3) by putting x = X + 2, y =Y + 3, the equation (1)
transforms to

Y+3) Y+3-6=X+22X°-9

or Y2 = X3(X + 2)2 ..(3)

Equating to zero the lowest degree terms, the tangents at the new origin are
Y2=0o0r Y =0, Y =0, which being real and coincident, new origin is a cusp or a
conjugate point.
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But from (3), Y =+ X(X + 2)vX which determines real values of Y for all
+vevalues of X. . Real branches of the curve exist in the neighbourhood of the new
origin.

Hence the new origin i.e., (2, 3) is a cusp.

Thus the given curve has a cusp at (2, 3) and a conjugate point at (0, 3).

(b) The equation of the given curve is

[, )=CQy+x+1)2-41-x)°=0 LD
o
. =22y +x+ 1)+ 2001 —x)*
d o 4(2 1
o = +a+ 1)
an ay ( y X )
. o af
For double points, ™ =0, ay
g—f =0gives 2@y +x+ 1)+ 20(1 —x)* =0 (2
X
of .
and — =0gives4(2y+x+1)=0 or 2y+x+1=0 ..(3)
Using (3), (2) becomes, 201 —x)*=0 or 1-x=0 .. «x=1

Putting x=1,1n (3),weget2y+1+1=0 or y=-1

Thus we get the point (1, — 1) satisfies the given equation (1) of the curve.
. (1, — 1) is a double point.
Character of (1, — 1).
Shifting the origin to (1, — 1) by putting x =X + 1, y =Y — 1, the equation (1)
transforms to
ROy - 1)+ X+ D+ 12 —4[l— X+ DP=0
or QY +X)2—-4X?=0 ..(4)

Equating to zero, the lowest degree terms, the tangents at the new origin are
(2Y + X)? = 0, which are real and coincident. Hence the new origin is a cusp or a
conjugate point.

Now from (4), 2Y + X =+ ZXZ\/K , which gives real values of Y for — ve values
of X. Hence real branches of the curve pass through the new origin
the new origin i.e., (1, — 1) is a cusp.
Hence the curve has a cusp at the point (1, — 1).
(¢) The equation of the given curve is

fe, =@+ —J2@—-x+22=0 (1)
For the double points a—f =0, % =0
ox dy
g—f=3(x+y)2+ W2 (y—x+2)=0 (2
X
%23(x+y)2—2«/§(yx+2)20 NG)

Singular Points

NOTES
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NOTES

Adding and subtracting (2) and (3), we get
6(x+3)2=0 or x+y=0 ..(4d

and 4J2(y—x+2)=0 or y—x+2=0 ..(®)

We get the point (1, — 1), Also (1, — 1) satisfies (1).

(1, — 1) is a double point.

Character of (1, — 1).

Shifting the origin to (1, — 1), by putting x=X + 1, y =Y — 1, the equation (1)
transforms to

[(X+ D+ -DP -2 [(Y-1)-X+1D+2]2=0

or X+ -2 ¥ -X)2=0 ..(6)

Equation to zero the lowest degree terms, the tangents at the new origin are
(Y = X)? =0, which are real and coincident new origin is a cusp or a conjugate point.

From (6) neglecting Y? and higher power of Y, we get
X3+ 3X2Y + 3XY? — +/2 (Y2 - 2XY + X2) =0

or V23X — fg) - XY(2v2 —3X) - X2(v2-X) =0
. X@2-3%): VX222 - 3X)? + 4X*(J2 - X) (3X - V2)
- 2(3X - /2)
| X(242 - 3X) + X|/(8 + 9X2 —122X) + 4(— 2 - 3X? + 4/2X)
- 23X - /2)
_ X(242 - 3X) + Xy/44/2X - 3X?

23X —/2)

When X is small and + ve, 42X — 3X2 is + ve.

Y is real. Hence real branches of the curve through the new origin. Thus the
new origin i.e., (1, — 1) is cusp.

Hence, the curve has a cusp of the point (1, — 1).
Example 16. (@) Examine the curve a’y® = a®x® — 4x° for singular points.

(b) Show that for the curve y° =(x — 2)2 (x — 5), the straight line joinning the points
of inflexion subtends a right angle at the double point.

Solution. (@) The eqaution of the curve is a?y? = x?(a? — 4x) (D
[Note that, singular points mean the points of inflexion and the multiple points.

Thus, we have to examine the curve (1) for the points of inflexion and the double
points. |

For the point of inflextion:

From (1), ay =+ xa —4x

ad_y =1 |+Ja —4x +x.¥
dx 2\Ja” — 4x

2_ p—
@ 4 -2x (@ — 6x)(a? — 4x)"112

\/az —4x
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2

and aZx—z =1t [(@® - 6x) (= 3) (a® — 4x) %2 . (- 4) — 6(a® — 4x) 7]

=+ 2(a? — 4x) *2[(a? — 6x) — 3(a? — 4x)]
=+ 2(a? — 4x) 32 [6x — 2a2]
d’y 2 _3/2 2 3Y (2 5l
a3 =1+ 2[6(a® — 4x)" *2 + (6x — 2a7) (=) (@® — 4x) °2 . (- 4]

=+ 12(a? — 4x)~ 52 [(a? — 4x) + 6x — 2a?]

_, 1202x —a?)
T (a? —4x)5/2 :
d2
For a point of inflexion, —32, =0 and #0
dx dx
d2 2
d_jzl =0gives bx—2a2=0 or x= L
X
2 3
Also x= a? gives d_33/ #0

2
But when x = a?, from (1),

4 4a2
a?y?= —|a®> ———|=—ve . yisimaginary.

Hence the curve has no point of inflexion.
For the multiplied points:
The equation (1) can be written as

flx, y) = 4x° —a?x?2 + a%y? =0 (2
F - =12x%2 - 2a%x and I 2a2y.
ox dy
For multiple points, —f =0, af
ox dy
2
F _ 0 gives 2x(6x—a?)=0 or x=0, &
ox 6
o
=0givesy=0
dy

2
The possible multiple points are (0, 0), (%, OJ

But only (0, 0) satisfies the given curve (1).
(0, 0) is the only multiple point on the curve.

Nature of origin. Equating to zero, the lowest degree terms in (2), the tangents
at the origin are given by

—a?x?+a*y?=0 or y?=x? . y=zx

Singular Points

NOTES
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Calculus—I Since the two tangent are real distinct, .. origin is a node or a conjugate
point.

From (2), ay = + x4Ja? — 4x , which gives real values of y for small values of x,
NOTES +ve or —ve.
Real branches of the curve pass through the origin.
Hence the origin is a node.
Thus the curve has a node at the origin.
(b) The equation of the curve is y? = (x — 2)% (x — 5) LD

Points of inflexion:

From (1), we have y=+(x—2)yx -5

d—y:_{l. x-5+(x—-2). 1 }
dx 2Jx -5

3 2x-5)+x -2 3 l s
2
%Zi%[3.(x—5)*1’2+(—%)(x—5)*3’2(3x—12)]

=t +(x-5) P [3x -5 -+ Bx—12)]
3

=+ S (@—5)"%2[2x— 10— (x — 4]
+3(x - 6)
=4 %(x—G) (x—5H) 2= W

2

d
Putting dx_jzl =0,wegetx=6

Also ﬁ changes sign at x =6 i.e., ﬁ =0
dx? dx?

x = 6 determines the point of inflexion.
When x =6 from (1), y*=6-22?6-5)=16 .. y=+4
Hence the points of inflexion are A(6, 4) and B(6, — 4).
Double Points. Writing (1) as,

flx,y) =y*—(x—2)%(x-5)=0

| of _ o _
For the double points, o =0, % =0

of _ 2 _
™ =—2-2)(x-H)—-(x—-2)% =0

or x-2[2x-5)+(x-2)]=0

or x-2)Bx-12)=0 .. x=24
of

and gZZyZO or y=0.

The possible double points are (2, 0) and (4, 0).
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But only (2, 0) satisfies the given equation of the curve.
The point P(2, 0) is the only double point.

Now we are to show that line joining the points of inflexion A (6, 4) and B(6, — 4)
substends a right angle at the double point P(2, 0).

_ _ ﬂ _ . Y9 — s
Now m, = slope of PA = 6_2|" 1 Using m =—=—=
B Xo —X;
-4-0
and m,, = the slope of PB = 6_9 1

mom,=1)1)=-1
the two line PA and PB are L or the line AB subtends a right angle at P.

KINDS OF CUSPS

We know that at a cusp, two branches of a curve have a common tangent and
therefore a common normal.

Single Cusp (Def.)

A cusp is said to be single if two branches of the curve lie entirely on one side of
the common normal. [See. Figs. below]

v Normal
© Normal

Tangent

Tangent

Fig. (i) Fig. (i)

Double Cusp (Def.)

If the two branches of the curve extend to both sides of the common normal
at the cusp (as shown in above Figs.), the cusp is called a double cusp.

E I
- 3
£l 2
S i
z, !
P !
H Tangent i
i I
: ]
i Pi Tangent
I
Fig. (/) Fig. (if)
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Caleulus-I Cusp of the First Species

NOTES

© Normal

»

Tangen't

\‘U/Normal

Nangent

Fig. (i) Fig. (ii)
Def. If the branches of the curve lie on opposite sides of the common tangent
the cusp (as shown in the above Figs.) the cusp is called a cusp of first species.

Y,

Cusp of the Second Species

]
51 £l
z, ol
i =z
P! :
| Tangent P Tangent
Fig. (/) Fig. (if)
. Y.
Def. If the branches of the curve lie on the same _A
side of the common tangent at the cusp, the cusp is E
called a cusp of second species, [See Figs. above] 2
Point of Oscul-inflexion B[~ Tangent %

A double cusp which is a combination of both
the species is called a point of oscul-inflexion.

WORKING RULE TO FIND THE NATURE OF CUSP AT
THE ORIGIN

Case 1. When the cuspidal tangent are y° = 0.

In this case we solve the given equation for y, neglecting terms containing
powers of y higher than two.

() If the roots are real for only one sign of x, the cusp is a single cusp.
() If the roots are real for both signs of x, it is a double cusp.
(tit) If the roots are opposite in sign, the cusp is of the first species.
(1v) If the roots are of the same sign, the cusp is of the second species.
Case I1. When the cuspidal tangents are x* = 0.

In this case, solve the given equation for x, neglecting powers of x higher than
two, and distinguish the various cases in a similar way as in case L.
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Case III. When the cuspidal tangents are of the form
(ax+ by)2=0.

Put p = ax + by. Then eliminate y (or x, whichever is convenient) from this
equation and the given equation of the curve. Suppose we eliminate y, then we shall
get an equation in p and x.

Solve the equation for p (neglecting p? and higher powers of p) and discuss the
various cases as in case 1. (Here p is y of case I).

Note. Nature of the cusp at a point other than the origin.
Transfer the origin to that point and proceed as above.

SOLVED EXAMPLES

Example 17. (a) Show that curve (2a — x) =x has a single cusp of the first species
at the origin.

(b) Show that the curve y° =x° + ax? has a single cusp of first species at the origin.
Solution. (a) The equation of the curve is
y22a —x) =3 (D
Equating to zero the lowest degree terms, the tangents at the origin are given
by 2ay*=0 or y?=0, which are real and coincident.

Hence the origin is a cusp or a conjugate point.

X

From (1), y==+x ..(2)

2a —x
When xis small and +ve, yisreal .. Realbranches of the curve pass through
the origin. Hence origin is a cusp.

Also for any small + ve value of x, the two values of y are of opposite
signs. .. the cusp is a single cusp of first species.

(b) The equation of the curve is y° = x® + ax? LD

Equating to zero the lowest degree terms, the tangents at the origin are given
by ax?=0 or x?=0, which are real and coincident.

Origin is a cusp or a conjugate points.
Solving (1) for x (after neglecting &%), we get

xX== y\/g ..(2)

For small + ve values of y, xisreal. .. Real branches of the curve exist in the
neighbourhood of origin. Hence origin is a cusp.

From (2), x is real only if y is + ve (of one sign), .. the cusp is a single cusp.

Again for any small + ve value of y, the two values of x are the opposite signs,
the cusp is of first species.

Hence origin is a single cusp of first species.

Singular Points

NOTES
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NOTES
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EXERCISE-3

(@) Show that the curve y? (x + 1) = x* has a double cusp of the first species at the origin.
(b) Find the nature of the cusp of the curve y? = x*(x + 2).
(@) Show that the curve y? = (x —a)? (2x — a) has a single cusp of the first species at (a, 0).

(b) Show that the curve (x+ y)* — \/2 (y — x + 2)2 = 0 has a single cusp of the first species
at the point (1, — 1).
(¢) Show that the curve x2 + 2x% + 2xy — y% + 5x — 2y = 0 has a single cusp of first species
at (-1, -2).
Answers

(b) Double cusp of the first species.



Curve Tracing

13. CURVE TRACING NOTES

STRUCTURE

Introduction

Procedure for Tracing Curves having Cartesian Equations
Polar Co-ordinates

Procedure for Tracing Curves having Polar Equations
Tracing of Parametric Equations

General Method to Find Asymptotes

LEARNING OBJECTIVES

After going through this unit you will be able to:

e Polar Co-ordinates

® Procedure for Tracing Curves having Polar Equations
* Tracing of Parametric Equations

¢ General Method to Find Asymptotes

INTRODUCTION

Let us consider the problem of tracing curves i.e., of finding approximate shape
of curves from their cartesian, polar or parametric equations without having to plot a
large number of, points on them. We shall consider mainly those curves whose equations
can be solved for y x or r. A working knowledge of the topics on Maxima, Minima ;
concavity, points of Inflexion and asymptotes is essential for learning this chapter. In
the following article, we shall explain the various steps which are helpful in tracing a
curve. But these steps and (particularly their order) is by no means rigid and some
steps can be omitted and their order can be varied to suit the particular problem.

PROCEDURE FOR TRACING CURVES HAVING CARTE-
SIAN EQUATIONS

Symmetry

(@) The curve is symmetrical about the x-axis, if the equation of the curve
remains unchanged when y is changed into — y 1.e., if the equation of the
curve contains only even powers of y.
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Calculus—I e.g., y? =x? + 4 is symmetrical about x-axis where as y? + yx = x? is not symmetrical
about x-axis.

(11) The curve is symmetrical about the y-axis if the equation of the curve does

not change when x is changed into — x i.e., if the curve contains only even powers
NOTES of x.

e.g., x> = 4ay is symmetrical about y-axis where as y = x® — 3ax? is not symmetrical
about y-axis.

(7i1) The curve is symmetrical about the Line y = x if the equation of the curve
remains unchanged when x is changed to y and y is changed to x. (y = x is a
straight line through origin and making an angle of 45° with x-axis).

e.g., x° + y® = 3axy is symmetrical about the line y = x where as x° + y° = bax?y is not
symmetrical about the line y = x.

(tv) The curve is symmetrical about the Line y =— x if the equation of the curve
remains unchanged when x is changed to-y and y is changed to-x. (y=—x1is a
straight line 1 to y = x).

e.g., x* + y* = 4a’xy is symmetrical about the line y = —x where as x® + y3 = 3axy is
not symmetrical about this line.

(v) The curve is symmetrical in opposite quadrants if the equation of the curve
remains unchanged when x is changed to - x and y is changed to - y.
e.g., x° + y° = bax?y is symmetrical in opposite quadrants whereas x* + y3 = 3axy is
not symmetrical in opposite quadrants.

Origin
(a) Find whether the curve passes through the origin. If the constant term is
missing from the equation of the algebraic curve, then it passes through the origin.

If the algebraic curve passes through the origin, then write down the equation
of the tangents at the origin by equating the lowest degree terms to 0.

If the origin is a double point (i.e., there are two tangents at the origin) ; then find
its nature whether a node (if the tangents are real, distinct) or a cusp (if the tangents
are real, coincident) or a conjugate (or isolated) point if the tangents are imaginary. If
a cusp, find its type.

A cusp is called a single cusp or a double cusp according as the two branches
of the curve lie entirely on one side or on both sides of the common normal.

A cusp single or double is said to be of first kind or second kind according as the
two branches of the curve , lie on opposite or same side of the common tangent.

(b) Position of curve w.r.t. tangent at the origin

Findy, -y, (or y 2 —y2if square roots are there) where y_ and y, are respectively
the ordinates of a point on the curve and a point on the tangent at the origin for the
same value of x.

Then discuss the two cases namely x > 0 and x < 0. (It should be noted that x >
0 in first and fourth quadrants and x < 0 in second and third quadrants).

‘ If ,—y)istveie,y. >y,; t.hen the curve lies above the tangent and if (y, —y,)
is —vei.e.,y, <y, ; then the curve lies below the tangent.
Asymptotes

(a) Working Rule for finding asymptotes of an algebraic curuve.

(1) Asymptotes || to x-axis. Equate to zero the co-efficient of the highest power
of x, present in the given equation of the curve. Resolve L.H.S. into real linear factors.
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(11) Asymptotes || to y-axis. (Replace x by y in (2)).
(i17) Oblique asymptotes
Putting x = 1, y = m in the highest degree terms of the given equation, find
0,(m).
Putting x = 1, y = m in the next lower degree terms of the given equation, find
¢, ;(m). Similarly, find ¢, , (m).
Now put ¢, (m) equal to zero and solve for m. These are the slopes of the
asymptotes.
For distinct real values of m, find ¢ from the equation
_ q)n -1 (m)
0, (m)

For two equal real values of m, find ¢ from the equation

2
;—!¢n"<m> +o  (m)+ o, (m)=0.

Putting the values of m and corresponding values of ¢ in y = mx + ¢, we get the
required asymptotes.

(b) Position of the curve w.r.t. asymptotes.

(1) Position of the curve w.r.t. asymptotes || to x-axis.

Let the asymplote parallel to x-axis be y = a.

Find the value of y — a from the equation of the curve.

(Generally, (y — a) will occur as a factor in the equation of the curve.)

Now in the R.H.S. of this value of y —a, put y = a.

Then discuss the two cases when x is > 0 (Near «) and x <0 (Near — ).

If (y — a) is + ve, the curve lies above the asymptote y = a
and if (y — a) is — ve, the curve lies below the asymptote y = a.

(11) Position of the curve w.r.t. asymptotes parallel to y-axis.

Let the asymplote parallel to y-axis be x = a.

Find the value of x — a from the equation of the curve.

(Generally (x — a) will occur as a factor in the equation of the curve).

Now in the R.H.S. of this value of x — a, put x = a.

Then discuss the two cases when y >0 and y < 0.

(It may be noted that y > 0 in First and Second Quadrants and y < 0 in Third
and Fourth Quadrants.)

If (x — a) is + ve, the curve lies to the right of the asymptote x = a and if (x — a) is
—ve, the curve lies to the left of the asymptote x = a.

(it1) Position of the curve w.r.t. oblique asymptotes.
Write the equation of the curve or one of its branches is in the form

A B
y=mx+c+—+— + ... , then
X x
y = mx + ¢ is the asymptote to the curve.
Y=y, =—+t— t.. where y_and y, stand for the ordinates of a point on
X x

the curve and a point on the asymptote (both having same abscissa).
Now discuss the two cases namely x> 0 and x < 0.
If ¢y, —y,) is positive, curve lies above the asymptote.
If (y, - v, is negative, curve lies below the asymptote.

Curve Tracing

NOTES
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NOTES

Points of Intersections
(These can be obtained by solving the two equations).

Find intersections of the curve (i) with the x-axis (y = 0) ; (i1) with the y-axis
(x = 0) (i11) with the line y = x particularly if the curve is symmetrical about it.

(tv) With the line y = — x particularly if the curve is symmetrical about it.

(v) With the asymptotes (if necessary).

(An asymptote of an nth degree curve cuts the curve in (n — 2) points).

Also write down the equations of the tangents at these points of intersection
by shifting the origin to the points.
Region

Find regions in the four quadrants to which the curve is limited. This is usually
done by solving for y or for x (or for each of the two) separately and considering both

positive and negative values of x (or y). Values of x (or y) which make y (or x) imaginary
are to be rejected.

Again, such values® which make the left and right members of an equation
opposite in sign are to be rejected.

(For example, see the solved examples).

Note. If x2<a? ;then —a<x<a.

If 2> a? ; then either x> a or x<—a.

If (x — a)(x = B) <0 ; then x lies between o and p.

If (x — a)(x = B) = 0 ; then x does not lies between o and p.

Special points (or singularities)

(@) Find 3
dx

(% represents the slope of the tangent to the curve at the point (x, y) J
X

Find the points where

. d . .
@) d—y =0 1.e., tangents are || to x-axis
X

. : .
@) d—y = oo 1.0, tangent are || to y-axis
X

@) d_y is positive i.e., the function is increasing i.e., the curve is rising.
X

@tv) % is negative i.e., the curve is falling.
x
dZy

Find —5- (If not tedious)
X

Find the points where
. d%y
i

® dx?

is + ve i.e., the curve is concave upwards.

% In Quadrant I, xis + ve and y is + ve.
In Quadrant II, xis — ve and y is + ve.
In Quadrant III, xis — ve and y is — ve.

In Quadrant IV, xis + ve and y is — ve.
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dzy Curve Tracing
(i) 42
dx

(111) Also find points of Inflexion.

is —ve i.e., the curve is concave downwards.

. . . . . d? NOTES
(At a point of Inflexion, curve crosses the tangent. At a point of inflexion el
X

d’ d’
=0 and d—%} # Oor d_;; changes sign while passing through it).
X x

Remark. The steps of Art 2. can be remembered as :
R—SOAP
where S = Symmetry, O = origin, A = Asymptotes ; P = Points

(1) of intersection with y =0, x=0, y=x,y=—x

.. . d
(1) points where d_y =0oreor>0or<0,
x

and R = Region.

Note. Sometimes inconvenient steps may be omitted without any disadvantage.

SOLVED EXAMPLES

Example 1. Trace the curve 9ay? = (x — 2a)(x — 5a)°.
Sol. The equation of the curve is 9ay? = (x — 2a)(x — Ha)? (D)
1. Symmetry. Since (1) contains only even powers of y.

The curve is symmetrical about x-axis.

2. Origin. The curve does not pass through the origin because (0, 0) does not
satisfy the given equation.

3. Asymptotes. The curve has no asymptotes.

4. Points of Intersection

(1) Intersection with x-axis

Putting y = 0 in (1), we get (x — 2a)(x — 5a)? = 0 or x = 2a, 5a.

Thus, the curve meets x-axis in the points A(2a, 0) and B(5a, 0).

Shifting the origin to (2a, 0) by putting x = X + 2a, y =Y + 0 ; the equation (1)
transforms to 9aY? = X(X — 3a)2.

Equating to zero the lowest degree terms, the tangent at the new origin is
X =01i.e., new y-axis.

Thus, the tangent at A(2a, 0) is parallel to old y-axis.

Shifting the origin to B(5a, 0) by putting x = X + 5a and y =Y + 0, the equation
(1) transforms to 9aY? = (X + 3a)X?
2

Tangents at new origin are 9aY? = 3aX? i.e., Y? = -5 Y=+

ke

New origin is a Node.
(11) Intersections with y-axis
Putting x = 0 in (1), we get 9ay? = — 50a°, which gives imaginary values of y.
Therefore, the curve does not meet y-axis.
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Calculus—I 5. Region

From (1), y = x/;_a (x —ba) yx—2a .. (2

(Taking only positive sign with square root)

NOTES (This value of y, corresponds to the part of the curve in first two quadrants.)
When x < 2a, y is imaginary.

Thus, the curve does not lie to the left of the line x = 2a.

When x > 2q, y is real.

6. Special points

From (2), % = x/;_a { (x— \/_ + 4/ — Za}

dy 1 {x—5a+2(x—2a):| B 3(x - 3a)

or = - = ‘
dx +9a ZJx—Za 236\/36—211
dy  x-3a 5
or dx —2ﬁ o ..(3)
ﬂ =0 gives x = 3a.
dx
But when x = 3a, then from (1) 9ay? = 4a®.
2a
+ 2=
YT 3
Tangents at the points (3(1, + 2—;) are parallel to x-axis.
dy . .
When x> 3a, In is positive | From (3)
x
The curve rises for all values of x > 3a (provided y is + ve) when x < 3a, Z—y
x
is negative. Ya

The curve is falling for values of x < 3a.

. dy _
Again In — oo when x = 2a. o (2a, 0) I/_\/(Sa, 0) R
The tangent at (2a, 0) is || to y-axis. Thus, A i\_/B\ X

the shape of the curve is as shown in the figure.

Note. Two important results from real
analysis :

2 2

l.x*<a 2 2

= —a<x<a. 2.x*>a* = x>aorx<-a.
Example 2. Trace the curve y*(2a — x) = x°.
Sol. The equation of the curve is y?(2a — x) = x° (D)

1. Symmetry. Since (1) contains only even powers of y, the curve is symmetrical
about x-axis.

2. Origin. The tangents at the origin are given by y*=01i.e., y=0,y=0.
Since the two tangents are real and coincident, .. origin is a cusp.

3. Asymptotes. Equating to zero, the co-eff. of y?, the highest degree term in y,
the asymptote parallel to y-axis is x — 2a = 0 i.e., x = 2a. There is no other asymptote
of the curve.

We can discuss the position of the curve w.r.t. asymptote x = 2a.
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4. Points of intersections.  The curve meets x-axis and y-axis at the origin Curve Tracing

only.

x
2a — x

5. Region. From (1), y==x

when x < 0, y is imaginary.
No portion of the curve lies to the left of the line x = 0 i.e., y-axis.
When 0 < x < 2a, y is Real.
When x > 2a, y is Imaginary.
No portion of the curve lies to the right of the line x = 2a.
6. Special points

3/2
x
F 1), -
rom (1) y Y
dy  Jx(Ba-x)
dx (20 -x)*? Y4
@D _
dx
when Jx Ba-x)=0
or x=0, x=3a

NOTES

Rejecting x = 3a, because when x = 3a, from X O
(2) y i1s imaginary.

Whenx=0,y=0 .. Tangent at (0, 0) i.e.,
at origin is || to x-axis i.e., the tangent at origin is Y’
x-axis (Also see step 2).
dy

Again, In — oo when x — 2a. From (2), when x — 2a, y — o
x
Thus, x = 2a is an asymptote (Also see step 3)

when 0 < x < 2a, Z—y is positive.
X

For positive values of y, y is an increasing function of x 1.e., the curve rises

for values of x between 0 and 2a.
Thus, the shape of curve is as shown in the figure.
Example 3. Trace the curve y =x° — 3ax?>.
Sol. The curve is y = &% — 3ax? (D) or y=x%x-3a)
1. Symmetry. No symmetry.
2. Origin. The curve passes through the origin.
The equation of tangent at the origin is y = 0 i.e., x-axis.
3. Asymptotes. No asymptotes.

4. Points of intersection
Intersections with x-axts. Putting y =0 1in (1), we get
¥—-3ax?2=0 or x2(x—-3a)=0
x=0 or x=3a
Intersections with x-axis are (0, 0) and (3a, 0)
Shifting the origin to (3a, 0), (1) becomes
Y = X+ 3a)?X
Equation of the tangent at the new origin is Y = 9a?X.

(2
N
:II
| X
A
1(2a,0) X
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Calculus—I 5. Region

From (1), y=x%(x — 3a)
when x<0,yis—ve.
No portion of the curve lies in the second quadrant.
NOTES When 0<x<3a, yis-—ve.

The curve lies in fourth quadrant for values of x such that 0 < x < 3a.
When x > 3a, y is + ve.

The curve lies in the first quadrant for values of x > 3a.
6. Special points

d

From (1), d—z = 3x% — 6ax = 3x(x — 2a) (2
dy . . _ _
dx =0 gives x = 0 and x = 2a.

When x =0, then from (1) y =0
Tangent at (0, 0) is x-axis.
when x = 2a, from (1), y = 8a® - 12a® = — 4a®
Tangent at (2a, — 4a°) is parallel to x-axis.
When x < 0, then from (2), Z—y is + ve.
X

y increases as X increases i.e., the curve is rising.

When 0 < x < 2a, % is —ve.
X
The curve falls in this portion.

When x > 2a, % is + ve.

x
Again y increases as x increases. (% x > 2a)
d2
From (2), —;; =6x—6a=6(x—a)
dx
d2
—Z =0givesx=a
dx
d3y _ g
dx® ‘
d3y
At x=aq, —5 = 620
dx

. x=a gives a point of inflexion.
When x = a, then from (1)

y=x°—-3ax?=a® - 3a’ = - 2a°
(a, — 2a®) gives a point of inflexion. Ya
d%y . .
When x > q, g is positive.
.. The curve is concave upwards for values 0
of x > a. X’ (3a,0) X
d?y
When x < q, 12 is negative. N\
X 3
The curve is concave downwards for values (2a, —4a’)
of x<a. Y’

The shape of the curve is as shown in the figure.
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Example 4. Trace the curve x%/° + y?/3 = a?/ (Astroid).
Sol. The curve is x2/2 + y2/3 = 213 (D
1. Symmetry.
() The curve is symmetrical about x-axis.
(-+ on changing y to — y, the equation remains unchanged)
(1) The curve is symmetrical about y-axis.
(111) The curve is symmetrical about the line y = x.
@v) The curve is symmetrical about the line y = — x.
(v) The curve is also symmetrical in opposite quadrants.
2. Origin
The curve does not pass through the origin.
3. Asymptotes
The curve has no asymptotes.
4. Points of Intersection
@) To find intersections with x-axts (Putting y =0 1in (1), we have)
4203 = g2/3
cubing, ¥»=a> .. x=xa.
Intersections with x-axis are (a, 0) and (— a, 0).
(1) Similarly, intersections with y-axis are (0, @) and (0, — a).
@@t1) To find intersections with line y = x.

Putting y = x1in (1), x¥2 + x28 =a?® or 2x%°=qa?

a
Cubing, 8x?=qa? .. «x=1t¢ )
. 22
. a a
Intersections are | + —— | + .
( 2277 242 J

(tv) Similarly, intersections with the line y = — x are (+ L

5. Region
From (1)? y2/3 = q23 — 28 . y = (((12/3 _ x2/3)3)1/2
For y to be real, a?P —x28>(0 or a®>x2B,

i.e., 2B <@ - o xt<a? . —a<x<a.

The curve lies between the lines x =—a and x = a.

Interchanging the roles of x and y, we can prove that the curve lies between the
linesy=—aandy =a.

6. Special points
X~ V3 Y3

Differentiating (1), 3 x84+ 3 13 d_ilc =0 .. P y——1/3 STy

..(2)
d
If—yZO, then =0 or y=0
dx
puttingy=01n (1), x =% a.
Tangents are || to x-axis at the points (+ a, 0) i.e., x-axis is a tangent at the
points (+ a, 0).
Similarly, dy — e when x =0
dx

puttingx=01n (1), y =% a.

Curve Tracing

NOTES
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NOTES

Tangents are || to y-axis at the points (0, + a).

dy

Again from (2), In is negative when x and y are both positive.
X

y decreases as x increases. (In the first quadrant)

w3 1 _—o3dy 13 1 _as3
Diff. (2 Ly | T 37 g * 3"
- (@), dac2 - 23

1/3 1/3
_Y _Y
1/3 2/3

X x 1[ %23 4 423

or — =-= =—|—m 7
A’ 3 23 3| £33
dzy a2/3

o " By (D]
dxz 3x4/3 y1/3

d?y . - YA
> is positive when x and y are
X
both positive. B(0,a)

Curve is concave upwards in
first quadrant.

The shape of the curve is as
shown in the figure.

Note. The point where the liney
= x meets the astroid x2/3 + y2/3 = g2/

a a .
i.e., the point | ——,—~—= [|iscalledthe
L P [2 22 ﬁ]]

ERTEX of the astroid.

(—a2+2,a22)

(a2 \2, a/2\2)

EXERCISE A

Trace the following curves :
1. y2=x3

a*y? = x3(2a — x).

a2y2 — x2(a2 _ x2).

® NS o

¥* = (= 2)%(x - 5).

10. y2=(x—Dx—-2)(x—3).
12. (@) %% = (a+ y)*(a® - y?)
13.  y(x%+ 4a?) =8a®.

15. y2(x2—-1)=x.

16. (@) y=
-1

17.  x2y? =a?(y? — x2).
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2. 9ay? = x(x — 3a)2.

4. a*y? = a?x* — x5,

y2 (a2 + x2) — x2(a2 _ x2) or x2(x2 + y2) — a2(x2 _ y2).

PO+ @@y =0 or %7+ ad) + 507 —a?) = 0.

9. a®x% = y3Q2a —y)
11. xy? =4a? (2a — x).

() x%y* = (@ + yH(a® - y?).
14. y’x = a?(x — a).

(b) ¥*y* =22+ 1.
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YA
11.
NOTES
2a, 0
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POLAR CO-ORDINATES

If we have any horizontal line OX called the
initial line and another line called the revolving line,
makes an angle 6 with the initial line, then the polar
co-ordinates of a point P on it where OP =r arc (r, 0).

P (r, 6)

The point O is called the pole and the angle 6
is called the vectorial angle of the point P and the
length r is called its radius vector.

Note 1. Representation of (-r, 6) when r > 0.

Polar radius r is considered positive if it is measured from the pole along the half ray
bounding the vectorial angle.

Let P be the point (r, ©). Produce OP backwards and cut off OP”= OP.
Then P’is (—r, 0).

P(r, 0)
Remark. For r > 0, (- r, 0) is the same point as
(r, ® +m) or (r, 0) is the same point as (—r, 0 + m). r
Note 2. In polar co-ordinates 6 = o is the equation of o 0

the halfray OP passing through the pole and making an angle
o with the initial line.

The equation of the other half ray OP"is 6 =1 + a.

<V

Note 3. r =a s the equation of a circle having centre at  “pr(—r, ¢)

the pole and radius a.
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Calculus—I Note 4. Relations between cartesian and polar co-ordinates,

x=rcosf0,y=rsin 0

Squaring and adding, r = 1[362 + y2 .

NOTES Dividing the two, tan 6 = X
x

PROCEDURE FOR TRACING CURVES HAVING POLAR
EQUATIONS

Symmetry

A curve is symmetrical about the ray 6 = o if on changing 6 to 20 - 0,
the equation remains unchanged.

In particular :

() The curve is symmetrical about the initial line 6 =0 (i.e., x-axis) if the equation
remains unchanged on changing 6 to — 6. (v 200-6=0-6=-0)

For example, r =a (1 + cos 0), r = a cos 30 are symmetrical about the initial line.

s
(1) The curve is symmetrical about the half ray 6 = 95
(.e., y-axis) if the equation remains unchanged on changing 0 to (n — 0)

n
5
If the equation of the curve remains unchanged when 0 s changed to — 06 and r to

[ 200—-6=m—-06]eg., r=a(l+sin6)andr=asin 36 are symmetrical about 6 =

. . m
—r, even then the curve is symmetrical about the half ray 6 = 5

. . m
For example, r6 = a is symmetrical about 6 = 9

(i1) The curve is symmetrical about the pole (i.e., symmetrical in opposite
quadrants ) if the equation remains unchanged on changing r to—r or 6 to 7w + 0.
Pole or origin

(@) Find whether the curve passes through the pole or not. This can be done by
putting r =0 in the equation and if on doing so, we get some real value (or values) of 0 ;
then the curve passes through the pole.

If it is not possible to find real value of 6 for which r = 0, the curve does not pass
through the pole.

@it) Find the tangents at the pole. Putting r = 0, the real values of 6 give the
tangents at the pole.

For example, consider the curve r = a (1 —cos 0). Putting r = 0, we get
cos6=1.. 06=0.

Hence the curve passes through the pole and the line 6 = 0 i.e., the initial line is
the tangent at the pole.

Again, consider r = a (3 — sin 0).
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Putting r = 0, we get sin 6 = 3 which does not give any real value of 6
[+ Isin6]|<1]
Hence the curve does not pass through the pole.
(i1) Find the points where the curve cuts the initial line and the line 6 = n/2.
Asymptotes

@) If 6 — 6, (some finite value) when r — <, then there is an asymptote.

Working Rule to find polar asymptotes :

1 . ..
Putr=— and let u — 0 so that 6 — 0, (6, 1s a definite number)
u
Determine p= Lt (— ﬁj
60— 0, du
u—0

Putting the values of p and 6, in the equation p =r sin (8, —6), we get the
corresponding asymptote.

@) If as 6 — oo, r — a, then there is a circular asymptote r = a.
Circular asymptotes of the curve r = f(0) are given by r = Lt f(0).
60—
4. Points of Intersection. Find some points on the curve for convenient values
of 0. (especially for values of 6 = o for which the curve is symmetrical).

5. Region. Solve the given equation for r or 0 (if possible). Find the regions in
which the curve does not lie. This can be done in the following way :

@) If for 8, <6 <0,, r is imaginary, then there is no portion of the curve between
the lines 6 = 6, and 6 = 6,. Consider r? = a? cos 26.

For m/4 <0 < 3m/4, cos 20 is negative. .. r?is —ve and so r is imaginary. Hence
the curve does not lie between the lines 6 =7n/4 and 6 = 3n/4.

(1) If the greatest and least numerical values of r be respectively a and b, the
curve lies entirely within the circle r = a and entirely outside the circle r = b.

(i) Trace the variations of r when 0 varies in the intervals (0, ) and (- s, 0)
marking the values of 6 for which r = 0 or attains maximum and minimum values. Plot
the points so obtained.

[Note. When ris a periodic function of 6, the negative values of 6 need not be considered.

We may consider values from 6 = 0 to those values of § where the values begin to repeat.]

6. Value of ¢. Find tan ¢ = r? and ¢.
r

(¢ 1s the angle between the tangent and radius vector.)

. . . T
Find the points where ¢ 1s 0 or 5
. . . . dr . .
Again, r increases as 0 increases if 20 as positive and r decreases as 0 increases

if ar is negative.
do

Note. Conversion into cartesians. Transform the equation into cartesians, when

tracing of the curve becomes easy on transformation to cartesian system of coordinate.
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Calculus-I SOLVED EXAMPLES

Example 5. Trace the curve r = a(l — cos 0).
Sol. The equation of the curve is r = a(1 — cos 0) ..(1)

NOTES 1. Symmetry. The curve is symmetrical about the initial line because the

equation of curve remains unaltered when 0 is changed to — 6.

2. Pole or origin. (i) When 6 =0, r = 0 hence the curve passes through the pole
and the tangent at the pole is the line 6 = 0, i.e., the initial line.

(1) The curve meets the initial line 6 = 0 at (0, 0) and the lines 6 = /2 and
7 in the points (a, 7/2) and (2a, ©) respectively.

3. Asymptotes. Since for any finite value of 0, r does not tend to infinity, .. the
curve has no asymptote.

4. Point of Intersection. The corresponding values of 6 and r are given below :
6=0 /3 /2 2mn/3 i
r=0 al2 a 3a/2 2a.

[We need not trace the curve for values of 0 from n to 2n as the curve is
symmetrical about the initial line.]

5. Region. (i) - | cos® | <1 .. From (1), r<2a.

The curve lies entirely within the circle A
r=2a. B (a, n/2)
(1) When 0 increases from 0 to m, r remains a
positive and increases from 0 to 2a. (2a, n) A e=0_
When 0 increases from 7 to 27, r is positive O=mn 2a 0 OO X
and decreases from 2a to 0. 0.0)1a
6. Value of ¢. C (a, 3n/2)
F 1 ﬂ = in 0
rom (1), 40 a sin 0.
.50
do r a(1-cos0) @.2sin 9
tanq):rd—: d = - = 5 e:tan_
r ar asin 0 a.2sin — cos —
do 2 2

_ 0
=5
Now ¢ =0 when 6 = 0 and ¢ = n/2 when 6 = 7.
At (2a, m) the tangent is perpendicular to the line 6 = m.

The shape of the curve is as shown in the figure.

Note. We will not consider the values of 0 after 21 here, because ris periodic with period
21 and therefore we do not get any new point on the curve.

Example 6. Trace the curve r = a sin 36.

Sol. The equation of the curve is r = a sin 30 ..(1)
1. Symmetry
From (1), r=asin 30 = a sin (n — 30) = a sin (3w — 30) etc.
i
or r=asin36=asin3(§—9)=asin3(n—6)etc.
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. . T Curve Tracing
(1) remains unchanged when 6 is changed to 3 0, or T — 6.

The curve is symmetrical about the rays
3
QZE,E(:_"),@,E,*’_",H’E NOTES
6 6 6 6 6
(s If on changing 6 to 200 — 6, the equation is unchanged, symmetry is about
the ray 6 = o).
2. Pole or origin. Putting r =0, we get sin 30 =0
30 = nm where n is zero or any other integer.
n 2n 3n 4n 5m 6n

i 2n 3n 4n 5m 67
37" 3’V 3T 3" 3" g
3. Asymptotes. Putting r = l; from (1), u= ——
u a sin 30
u = 0 does not give any finite value of 0.
No asymptotes.
4. Point of Intersection

When 0=0, 5°'6'6°6° 6 6 (Rays of symmetry)
From (1), r=0,a,—-a,a,—a,a, —a.
5. Region. (i) From (1), r < a numerically [~ sin 36 < 1 numerically]

The curve lies entirely within the circle r = a.
(1) Region w.r.t. tangents at the pole. Tangents at the pole are

0=0 0= p= 2" g 3T o 41 4 57
- Y - 3> - 3 ) - 3 ) - 3 ) - 3
When 0 <0 <mn/3 ; then 0 <30 <mi.e., 30 lies in first or second quadrant.
From (1), ris + ve [+ sinBis+vein I or Il quadrant]
Similarly, when T <o sﬁ, ris—ve.
3 3
When Z—RS6S3—E, ris +ve.
3 3
When 3—RS6Sﬂ, ris —ve.
3 3
When 23935_71, ris+ve.
3 3
When 5—ns6s6—n, ris —ve.
3 3
6. Value of ¢. From (1), r = a sin 36
dr 1
do 3

— =3acos 30 .. tanQ):(d—r):—tanSG
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Calculus—I ) o
tan ¢=°°(l-e-, ¢=§) 0=2n/3 0=m/3

_.-6=n/6

f 6:_7_:_:_7_7 Y
NOTES or 6°6°6 66 6 o=x O\
Tangent is perpendicular to the radius
vector at the points

n 3n S5n Tn 9n 1ln 6 =11n/6
6’66’6 6 6 0=4n/3| 6=5m3
Thus, the shape of the curve is as shown in 0 = 31/2
the figure.
Remark. We have not considered values of 6 outside [0, 2n] because r = a sin 30 is
periodic.

Note 1. cos x = cos (—x) =cos (2n —x) =cos (4 —x) = ......
Also cos 0 =0 gives 6 = 2n + 1) n/2.

Note 2. The curve r = a sin nf or r = a cos n6 consists of n or 2n loops according
as n is odd or even.

Example 7. Trace the curve r® cos 0 = a? sin 30.
Sol. The equation of the curve is 72 cos 6 = a? sin 30 (D)
1. Symmetry. On changing r to —r, equation (1) remains unchanged.

The curve is symmetrical about the pole, i.e., the curve is symmetrical in
opposite quadrants.

2. Origin or Pole.
Putting r =0 in (1), we get sin 30 =0
30 = nm when n is zero or any other integer.
n 2n 3n 4n 5m 67

The curve passes through the pole and the tangents at the pole are

- T - D - D

1
3. Asymptotes. Putting r = o’ from (1),

cos 0

wt= g (2
a? sin 36 (2
Let u — 0. Therefore, cos 6 — 0, 1.e., 6 — g, 3?71
Diff. (2 _— 9 du 1 |-sin36sin - cos 6 (3 cos 36)
( )W.I‘. .0, u 40 = a2 Sin2 26
du _ (sin 36 sin 6 + 3 cos O cos 30)
do 2a? u sin® 30
2 i 2
For 61:£» p= Lt (_@j: . gua sin” 30 _
2 00, \  du 6-m/2 sin 30 sin 6 + 3 cos 0 cos 30
u—

u—0

The asymptote is p = r sin (6, — 6)

or 0=rsin(£—e) e, rcos0=0 or x=0
2 [ x=rcos0]

I.e., y-axisis an asymptote to the curve.
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) 3n .
Again, for 0, = > y-axis is an asymptote.

4. Points of Intersection. When 6 =0 ; From (1), r = 0 (Also see step 2).

T 2a 2a
When 6 = —, =" o r=t =
6 J3 V3

2a T
The two points are |+ |—, —
[ V3 GJ

T .
when 0= 37" 0 again.
5. Region w.r.t. tangents at the pole
2 .
sin 30
From (1), p2= 4 S0V
cos 0
i ) .
when OSGSg, r?is + ve ris real.
m i ) . .
when § <0< 5, r?is —ve r 1S 1maginary.
. . m s
No portion of the curve lies between the two half-rays 6 = 3 and 0 = 3
i 2n . .
when Eses?r is +ve ris real
when 2—n<9<TC r? is —ve /2
3 275/3\\ T // /3
r is imaginary. \, J
No portion of the curve lies between the half AN ///
rays by
2n >
62? and 0=m. O 6=0 X
Hence the shape of the curve is as shown. /, \\\
Note. We have not discussed the values of 8 between © / N
and 271 because the curve is symmetrical in opposite quadrants. N

Example 8. Trace the curve x° +y° = 5a°x%y.

Sol. The equation of the curve is x° + y° = Sa2x?y

(D

1. Symmetry. The curve is symmetrical in opposite quadrants because equation
(1) remains unchanged when both x and y are changed to — x and — y respectively.

2. Origin. The curve passes through the origin. The tangents at the origin are

x2y=0ie, x=0,x=0y=0.
The y-axis is a cuspidal tangent.

In fact, the origin is a node as well as a cusp.

3. Asymptotes. Since co-efficients of x° and y® are constants, therefore, the

curve has no asymptotes parallel to axes.
Let us now find oblique asymptotes :
From (1), ¢.(m) =1+ m®

¢4(m) =0 [

[Putting x = 1 and y = m in fifth degree terms]

There are no fourth degree terms in equation (1)]

Curve Tracing

NOTES
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Calculus—1 Putting ¢.(m) =0, wehave m®+1=0 or m°=-1 .. m=-1
To find ¢, cd;'(m) +¢,(m) =0

or cGm*H =0 or ¢=—F=0.
NOTES . . 5m
Equation of the asymptote is y =mx +cory=—x.

Position of the curve w.r.t. the asymptote. In the second quadrant, x is negative
and y is positive.
R.H.S. of (1) is + ve.
L.ILS. of (1) namely y® + x® must also be + ve.
Hence y should be numerically > x.
Thus, the curve lies above the asymptote y = — x.

Because of symmetry in opposite quadrants, the curve approaches the other
end (in the fourth quadrant) from below.

4. Points of Intersections

@) With x-axis. Putting y=01in (1), x°=0 or x=0.
Point of intersection is (0, 0)

(11) Similarly, point of intersection with y-axis is also (0, 0).

(ii1) Intersections with the line y = x. Putting y = x in (1), we have

2x°=5a%x°. . x=0 or xZi\/g.a

5
y=0 and «x= iwf—.a
2
. . ) 5 5
Point of intersection are (0, 0) ; | * 5 a,* 5 al.

(v) Intersections with the asymptote y = — x. Solving (1) and y = — x, we again
have (0, 0) as their intersection.

5. Region. Transforming to polars [by putting x =r cos 6 and y = r sin 0 in (1),
we have]

5 5a cos? 0 sin O
r =

cos® 0 +sin® 0

. YA
For values of 0 between % and m, r? is 1

negative and so r is Imaginary.
Thus, no portion of the curve lies between

the lines 6 = 3n and 0 = . Thus, the shape of the
curve is as shown in the figure.

Note. We could do without this step 51in the above
solution [because the conclusion draw in step (5) was
already obtained in step (3)].
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EXERCISE B
Trace the following curves :
1. r=acos36. 2. r=a cos 56.
ab?
3. r=—-y.
1+0
. . . ab?
[Hint. r = a is a circular asymptote for this curve -+ L 5 =a.
06— 146
4. (@) r=ae™ where a, m are + ve. (b) r = qed ot o,
[Hint. Curve in part (b) in the same as in (@) where m = cot a.]
5. r=a0. 6. 12 cos 20 = a?.
[Hint. Cartesian equation is x% — y? = a2 ]
7. r=a(l+sec0). 8. x* + y*=4a?xy.
[Hint. No portion of the curve lies in second and fourth quadrants.]
9. yt—xt+xy=0. 10. x° + y5 = 5ax?y2. 11. x* + y* = 4axy?.
2
12. 2. 1 + cos 6 (Parabola).
r
Answers
1. 2.
X X
157/10
3. 4. \
0] >
(a, 0) X
Circular Asymptote r =a is shown as dotted. The part of the curve for negative values
is its reflection in the initial line.
5. Ya 6. Yo=n2 o_.4

XV

Curve Tracing

NOTES
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Calculus—I

NOTES

11.

| 8.
|
L !
>N
' | A »
Y | 1(2a,0) x
! 1
i D
i
v !
YA 10.
\\\ //.\:///
\\ //
0 X
v
Y4 12.
o) X

e)
<V

AY
(4a, 21/3)

(2a, 1/2)
(4a/3, 1/3)

/

A@o0) x

XV

TRACING OF PARAMETRIC EQUATIONS
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a|>e
[ 3] I v

x=acost, y=bsin t. (Ellipse)
2

y—zzcos2t+sin2t= 1.

b
Xx=acosl, y=asin {. (Circle)

x2 + y2 =a? (cos? t + sin? t) = a?

Let x = f(t), y = 0(t), where t is the parameter in the equations of the curve.

Case I. If conveniently possible, the parameter is eliminated and the
corresponding cartesian equation obtained and then the procedure explained earlier
in Art. 2. is followed.

The following results may prove helpful :



3. x=acos’t, y=>bsin?{ (Hypo-cycloid)
(xJZ/s (yJZ/s
— +| = =1.
a b
4, x=acos’t, y=asin®{ (Astroid)

208 4 208 = 208,

(This curve, we have already traced as example 7)
5. x=12 y=t—31
y=i1-1?) =11 —x/3)

y2=12(1 — x/3)% = x(1 — x/3)2.

.3
. t . .
6. x=asin?{, = o (Cissoid)
cost
sin ¢ 5 sin? ¢ s xla. x>
= X . = —. =
cost 1-sin?t 1-x/a
or y2 (@ —x) = x°.
1-¢2 ot
7. x= Ly = (Circle)
1+¢2 1+1¢2
o o A= +4®  (1+12)?
XY= 212 - 272
1+¢%) 1+¢%)
3at 3at?
8. X=——=,y= ) Folium of Descarte’s
1467 T 1448 ( / )

(1+¢%)  274%°
1+t%)%  1+¢%)?

Case II. Ifitis not conveniently possible to eliminate the parameter, then the
following procedure is followed :

X%+ 3 = 27a%¢° = 3axy.

Symmetry

(@) If on changing { to — f or (t to m — ) ; x(=/(t)) remains unchanged and y (= ¢(f))
changes to — y ; then the curve is symmetrical about x-axis.

e.g., The parabola x = at?, y = 2al is symmetrical about x-axis.

(17) Similarly, if on changing [ to — ¢ (or ¢ to m — £), x changes to — x and y remains
unchanged, then the curve is symmetrical about y-axis.

e.g., (1) thecycloid x = a(t + sin t), y = a(l — cos t) is symmetrical about y-axis.

(2) The ellipse x =a cos t, y = b sin t is symmetrical about y-axis.
(changing t to m — )
(it) If on changing { to — ¢ ; x changes to —x and y to —y, the curve is symmetrical
in opposite quadrants.
c
e.g., the rectangular hyperbolax=ct, y = 7 is symmetrical in opposite quadrants.
Origin
If on putting x = 0 (or y = 0) a real value of ¢ can be found out, which makes y =0
(or x = 0), then the curve passes through the origin.

or Put both x and y equal to zero and find values of {. If there is any common value
of t, then the curve passes through the origin.

Curve Tracing

NOTES
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Calculus—1 Asymptotes
Find asymptotes if any.

NOTES GENERAL METHOD TO FIND ASYMPTOTES

Asymptotes || to x-axis

Find the definite values d,, d,, ...... to which y tends as x — + o or — oo, then
y=d,y=d, ... are asymptotes || to x-axis.
Asymptotes || to y-axis

Find the definite values &k, k,, k., ...... to which x tends as y — + o or — oo, then
x=k,x=ky, ... are asymptotes || to y-axis.
Oblique asymptotes

y =mx + ¢ is an oblique asymptote to a curve where

Y

m= Lt = and c= Lt (y-mx).
X oo X X —> o0
y e y—>eo

Points of Intersection

() The points of intersection of the curve with x-axis are given by the roots of
the equation y = ¢(t) = 0.

(11) The points of intersection of the curve with y-axis are given by the roots of
the equation x = f(t) = 0.
Region

If easily possible, find the greatest and least values of x and y and therefore, the
lines parallel to the axes between which the curve lies or does not lie.

For example. If the curve is x = a cos 0, y = b sin 0 ; then the greatest value of
x1s a and the least value is — a.

(- greatest and least values of cos 0 are 1 and — 1)
The curve lies entirely between the lines x =+ a.
Similarly, the curve lies entirely between the lines y ==+ b.
Special points

Find dx and y and then consider the signs of dx and dy in suitable intervals
dt dt dt dt
of t.
. . dy( dyldt
Find —| = )
ind dx( dx/dt)

Give to the parameter ¢ certain values and find the corresponding values of x, y

and the slope of the tangent namely % Plot these points (whose cartesian co-ordinates
X

., d . 2
are known to us). Find those points on the curve for which d—y =0 or . Also find d—%’
X

and discuss for concavity and points of inflexion (as explained in Step 6 of Art. 2).
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SOLVED EXAMPLES

Example 9. Trace the cycloid x =a (0 + sin 0). y =a(l + cos 0).
Sol. The parametric equations of the cycloid are

x=a® + sin 0), y = a(l + cos 0) E))
Let us trace this curve firstly for values of 0 in the interval [, 7].

1. Symmetry. On changing 6 to — 6 in (1), changes to — x and y remains

unchanged.

The curve is symmetrical about y-axis.

2. Origin. Putting y =0, a(1+cos 6) =0

cos0=—1 or 6=m

For 6 =m, x=a®+smoO)=an=0
The curve does not pass through the origin.

3. Asymptotes. The curve has no asymptotes.

4. Points or Intersection

() Intersections with x-axis. Putting y = 01n (1), we get 6 = m which gives x = an.
Intersection with x-axis is (am, 0).

(1) Intersection with y-axis. Putting x = 0 in (1), we have 6 + sin 6 = 0 which is

satisfied by only 6 =0 and for 6 =0, y =a (1 + cos 0) = 2a.

or

Intersection with y-axis is (0, 2a).
5. Region. We know that —1<cos 06<1
: 1-1<1+4+cosB<1+1
0<(1+cosB)<2
O0<a(l+tcosB)<2a or 0<y<2a
Curve lies entirely between the lines y = 0 and y = 2a.
6. Special points. From (1),

@ a1+ dy
a0 a (1 + cos 0) and 40 asin 0
9 .n9 0
ﬂ_ dy/d@ _ asin 6 S1 ECOSE 0

- =- =—tan§ . (2)

dx  dx/d® a (1+ cos 0) 9 cos? g
Corresponding values of x, y and dy/dx for different values of 6 are given below
0=—m — /2 0 /2 T
From (1), x=-—an —a(g+ 1) 0 a(ng 1) an
y=0 a 2a a 0
From (2), ﬂ = oo 1 0 -1 — oo
dx

Points on the curve are

 an, 0), [— a(g+ 1) , a}, [0, 2al, |:a (g+ 1),4, [am, O].

Tangents at the points [- an, 0] and [an, 0) are parallel to y-axis.

(v dyldx = o or — )

Curve Tracing

NOTES
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Calculus—I Tangent at the point (0, 2a) is || to x-axis (0 dyldx =0)

Form (2), ﬂ = —tan 9
dx
NOTES o d*y _ ( 2 9)101_
Again diff. w.r.t. x, T2 2134
dy -1 .8 1 .8
—5 = — sec? —.— sec? —
dx 2 2 2a 2
do 1 1 1 5,0
—_— = = =_—sec” —
dx a(l+cos®) 2acos?6/2 2a 2
or & _ -1 sec? 19
dx?®  4a 2
dzy . .
> is negative for all values of 0.
The curve is concave downwards.
For values of 6 > 1 or < — m, the same types of branches of the curve will be
obtained.

The curve consists of congruent arches on Y4
both sides of y-axis which extend to infinity.

Hence the shape of the curve is as shown in
the figure.

Note. B is called vertex of the cycloid and Line
A’A i.e., the line joining the two end points is called base _ >
of the cycloid and a is called the radius of the generating A"f=-mn 1O 6= A X
circle.

Remark. We have taken 6 from — 7 to m to get one arch of the cycloid or one complete
cycloid. We will again take 6 from — 7 to « for the cycloid

x=a®+sm06),y=a(l--cosb)
t.e., We take 0 in [- 7, ] for the cycloids
x=a (0 +sin 0),y=a (1 +cos 0)
We will take 0 in [0, 27t] for the cycloids
x=a((®-sin0),y=a (1 =+ cos0)

(v For these two cycloids, for values of 6 < 0 or 6 > 2%, the same types of
branches of the curve will be obtained.)

Example 10. Trace the curve
1 t
x=a |:cos t+ > log tan’® 5}, y=asint. (Tractrix)

Sol. The equations of the curve are
x=acost+%logtan2é,y=asint (D)

1. Symmetry. (i) On changing t to— ¢ in (1), x remains unchanged and y changes
to —y.
The curve is symmetrical about x-axis.

(1) On changing ¢ to m — £ in (1), ¥ is unchanged and x changes to — x.

Symmetry about y-axis.
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2. Origin. Putting y =0, we get sin £ =0 or £ =0 and then
a
x=a+—log0=—
2 g

The curve does not pass through the origin.
3. Asymptotes. When t =0, x - — o and y = 0.

Thus y = 0, 1.e., x-axis is an asymptote to the curve.
4. Points of Intersection. The curve does not meet x-axis.
The curve meets y-axis (putting x = O) where

1
x—acost+§alogtan2

and then

5. Reglon We know that —1<sin(<1

—a<asint<a or —asy<a
Thus the curve lies entirely between the lines y =+ a.
6. Special Points. (i) From (1),

1
ﬂ——asm1f+la.—2.21:an£.sec2i 1
dt tan? /2 2 2°2
. 1 1
—a|-sint+—— | =al|—-sint+
2 sin t/2 cos t/2 sin ¢
(1— sin? t] cos? ¢ dy
=a - = - — =qacost
sin ¢ sin ¢
dy
dy gt acost
— =Lt =——"— =tant (2
dx dj a cos? ¢ @
dt sin ¢
ﬂzw,whentziﬁandtheanO,yzia‘
dx 2

Thus, at the points (0, + a) the tangent is || to y-axis.

(See step (3) Art. 6)

= 0 which is satisfied by t =+ E

Vi . )
y =asin (i 5) ==+ @. Thus, the curve meets y-axis in the points (0, £ a).

Curve Tracing

NOTES

l.e., y-axis itself is a tangent at the points (0, + a).
d ) ..
d_ilc = 0 when ¢ = 0 and then x — o, y = 0, showing that y = 0 or x-axis is an
asymptote as proved earlier.
YA
Y _
From (2), - tan ( t=m2 (0, a)
. d?y ., dt
Diff. w.r.t. x, e =sec’t Ix =0 -
sin ¢ >
=sec’t. ——5— o X
acos”t
_ sint
acostt (0,-a)
d?y

is + ve for values of ¢ in [0, m].

dx?

The curve is concave upwards for values of ¢ in [0, 7.
The shape of the curve is as shown in the figure.
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x-axis are (—a, 0) (0, 0) and (a, 0).
(11) Intersections with y-axis

at+¢%) at-t%)

Example 11. Trace the curve x= Ly =
P 146t 7T 1t
t+t? t(1+¢2
Sol. Equations of the curve are x = ol v ) =2 ( v ) ..(1)
1+¢ 1+¢
Cat-t%)  at(1-¢7) @
1+¢* 1+ ¢ h
Let us eliminate ¢ from Equations (1) and (2) to form Cartesian Equation.
Dividing Eqn. (1) by Eqn. (2), we have
x 1+¢2 5 5 5
— = 5 or y+itty=x—I{*x or t*(x+ty)=x-y
y 1-t
xX—-Yy
2 - — 2 i
t Tty ..(3)
S.B.S. of Eqn. (1) and cross-multiplying x%(1 + (%)2? = a%t* (1 + 1?)?
Putting the value of ¢? from (3),
-9 @G-y [, x-y)
PPt L L L .
(x+y) x+y x+y
2 [(x + )% +(x — )P _ a®(x—y) [ 2x T
(x + y)* x+y) |(x+y)
4x? (2% + y2)? B 4ax%(x — y)
(x +y)* (x+y)?°
g . 4x° 24 9%)2
Dividing both sides by X 5 @+ a’(x —y)
(x+y) x+y
cross-multiplying 2 + 992 = a?(x? — y?) (D

1. Symmetry. Curve (4) is symmetrical both about x-axis and y-axis
[- It contains only even powers of y and only even powers of x].
2. Origin. Curve (4) passes through the origin.
Tangents at the origin are a®(x? —y%) =0 (Equating lowest degree terms to zero)
But a#0 . a2—y2=0 or y2=x? . y==ux
3. Asymptotes. The curve has no asymptotes.
[ Coeff. of x*is 1 # 0 ; Coeff. of y*is 1 #0 ;
o,(m) = (1 + m?? = 0 gives no real values of m]
4. Points of Intersection
(1) Intersections with x-axis
Putting y=0in Eqn. (4), x*'=a%?
x*—a2x?=0 or 2@?—-a?)=0
Either x=0 or x? = a?
x=+a
Intersections of the curve (4) with

Putting x =01in Eqn. (4), y*=—a%*y?* or y*+a*?=0 or »>(y?+a?> =0
: y=0 or y==1ia

The only point of intersection of curve (4) with y-axis is (0, 0).
Thus the shape of the curve is as shown in the figure.



EXERCISE C

Trace the following curves :

1.

x=a®+sin0), y=a (1l —cos 0). 2. x=a (®—sin 0),y =a (1 + cos 0).
[Hint. See Remark Example 1.] [Hint. See Remark Example 1.]
x=a (@ —-sin 0),y=a (1 —cos 0) 4. xztz,yzt—%t'g.

_a(1-¢2) at(1-t%)

= [Hint. Eliminate ¢ by dividing.]

)

1+¢2 1+¢2

x=a [cos O —log (1 + cos B)], y=asin 6.
x=a sin 20 (1 + cos 20), y = a cos 20 (1 — cos 20).

Answers

o Ya 6. Ya
I ©
I Il
x| x
N A
X’ . X a0 N
. 0| > (a,0) X e
i
i A’
Y (0! _a)
v’
YA
C A
X (0] X

Curve Tracing

NOTES

Self-Instructional Material

295






	Blank Page
	Blank Page



